【題目】已知函數(shù),.
(1)證明:,直線都不是曲線的切線;
(2)若,使成立,求實數(shù)的取值范圍.
【答案】(Ⅰ)見解析; (Ⅱ).
【解析】
試題(1)若直線與曲線相切,因直線過定點,若設(shè)切點則可得①,又,上單調(diào)遞增,當且僅當時,①成立,這與矛盾,結(jié)論得證.
(2)可轉(zhuǎn)化為,令,,,分類討論求的最小值即可.
試題解析: (1)的定義域為,,直線過定點,若直線與曲線相切于點(且),則,即①,設(shè),,則,所以在上單調(diào)遞增,又,從而當且僅當時,①成立,這與矛盾.
所以,,直線都不是曲線的切線;
(2)即,令,,
則,使成立,
.
(i)當時,,在上為減函數(shù),于是,由得,滿足,所以符合題意;
(ii)當時,由及的單調(diào)性知在上為增函數(shù),所以,即.
①若,即,則,所以在為增函數(shù),于是,不合題意;
②若,即,則由,及的單調(diào)性知存在唯一,使,且當時,,為減函數(shù);當時,,為增函數(shù);
所以,由得,這與矛盾,不合題意.
綜上可知,的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】有名乒乓球選手進行單循環(huán)賽(無和局),比賽結(jié)果顯示:任意5人中既有1人勝于其余4人,又有1人負于其余4人.則恰勝兩場的人數(shù)為______個.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班在一次個人投籃比賽中,記錄了在規(guī)定時間內(nèi)投進個球的人數(shù)分布情況:
進球數(shù)(個) | 0 | 1 | 2 | 3 | 4 | 5 |
投進個球的人數(shù)(人) | 1 | 2 | 7 | 2 |
其中和對應的數(shù)據(jù)不小心丟失了,已知進球3個或3個以上,人均投進4個球;進球5個或5個以下,人均投進2.5個球.
(1)投進3個球和4個球的分別有多少人?
(2)從進球數(shù)為3,4,5的所有人中任取2人,求這2人進球數(shù)之和為8的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)若存在,使得(是自然對數(shù)的底數(shù)),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,是矩形,平面,,,四棱錐外接球的球心為,點是棱上的一個動點.給出如下命題:①直線與直線是異面直線;②與一定不垂直;③三棱錐的體積為定值;④的最小值為.其中正確命題的序號是______________.(將你認為正確的命題序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校開展主題為“垃圾分類,綠色生活新時尚”的宣傳活動,為了解學生對垃圾分類知識的掌握情況,該校環(huán)保社團成員在校園內(nèi)隨機抽取了部分學生進行問卷調(diào)查,將他們的得分按優(yōu)秀、良好、合格、待合格四個等級進行統(tǒng)計,并繪制了如下不完整的統(tǒng)計表和條形統(tǒng)計圖.請根據(jù)以下信息,解答下列問題:
等級 | 頻數(shù) | 頻率 |
優(yōu)秀 | 21 | 42% |
良好 | 40% | |
合格 | 6 | |
待合格 | 3 | 6% |
(1)本次調(diào)查隨機抽取了__________名學生,表中__________,__________;
(2)補全條形統(tǒng)計圖;
(3)若全校有名學生,請你估計該校掌握垃圾分類知識達到“優(yōu)秀”和“良好”等級的學生共有多少人.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列4個命題:
(1)有兩個面互相平行,其余四個面都是全等的等腰梯形的六面體是正四棱臺;
(2)底面是正三角形,其余各面都是等腰三角形的棱錐是正三棱錐;
(3)各側(cè)面都是等腰三角形的四棱錐是正四棱錐;
(4)底面是正三角形,相鄰兩側(cè)而所成的二面角都相等的三棱錐是正三棱錐
中,假命題的個數(shù)為( ).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com