已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,-<φ<0)的圖象與y軸的交點(diǎn)為(0,1),它在y軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為(x0,2)和(x0+2π,-2).

(1)求函數(shù)f(x)的解析式;
(2)若銳角θ滿足cosθ=,求f(2θ)的值.

(1)f(x)=2cos(x-)
(2)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)把的解析式Acos()+B的形式,并用五點(diǎn)法作出在一個(gè)周期上的簡圖;(要求列表)
(2)說出的圖像經(jīng)過怎樣的變換的圖像.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)求函數(shù)的值域;
(2)求函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,有一塊正方形區(qū)域ABCD,現(xiàn)在要?jiǎng)澇鲆粋(gè)直角三角形AEF區(qū)域進(jìn)行綠化,滿足:EF=1米,設(shè)角AEF=θ,θ,邊界AE,AF,EF的費(fèi)用為每米1萬元,區(qū)域內(nèi)的費(fèi)用為每平方米4 萬元.

(1)求總費(fèi)用y關(guān)于θ的函數(shù).
(2)求最小的總費(fèi)用和對(duì)應(yīng)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某實(shí)驗(yàn)室一天的溫度(單位:)隨時(shí)間(單位:)的變化近似滿足函數(shù)關(guān)系;
.
(1)求實(shí)驗(yàn)室這一天的最大溫差;
(2)若要求實(shí)驗(yàn)室溫度不高于11,則在哪段時(shí)間實(shí)驗(yàn)室需要降溫?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,A,B是單位圓上的兩個(gè)質(zhì)點(diǎn),點(diǎn)B坐標(biāo)為(1,0),∠BOA=60°.質(zhì)點(diǎn)A以1 rad/s的角速度按逆時(shí)針方向在單位圓上運(yùn)動(dòng),質(zhì)點(diǎn)B以1 rad/s的角速度按順時(shí)針方向在單位圓上運(yùn)動(dòng).

(1)求經(jīng)過1 s 后,∠BOA的弧度;
(2)求質(zhì)點(diǎn)A,B在單位圓上第一次相遇所用的時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

扇形AOB的周長為8 cm.
(1)若這個(gè)扇形的面積為3 cm2,求圓心角的大;
(2)求這個(gè)扇形的面積取得最大值時(shí)圓心角的大小和弦長AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),x∈R(其中A>0,ω>0,)的周期為π,且圖象上一個(gè)最低點(diǎn)為M.
(1)求f(x)的解析式;
(2)當(dāng)x∈時(shí),求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,某建筑工地準(zhǔn)備建造一間兩面靠墻的三角形露天倉庫堆放材料,已知已有兩面墻、的夾角為(即),現(xiàn)有可供建造第三面圍墻的材料米(兩面墻的長均大于米),為了使得倉庫的面積盡可能大,記,問當(dāng)為多少時(shí),所建造的三角形露天倉庫的面積最大,并求出最大值?

查看答案和解析>>

同步練習(xí)冊(cè)答案