【題目】在平面直角坐標系中,直線:(為參數(shù),),曲線:(為參數(shù)),與相切于點,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.
(1)求的極坐標方程及點的極坐標;
(2)已知直線:與圓:交于,兩點,記的面積為,的面積為,求的值.
【答案】(1);點的極坐標為(2)
【解析】
(1)消去參數(shù)得的直角坐標方程,利用直角坐標方程和極坐標方程的轉化公式即可得的極坐標方程;由題意得的極坐標方程為,代入的極坐標方程后利用即可得解;
(2)由題意可得,設,,將代入后即可得,,再利用三角形面積公式可得,,化簡即可得解.
(1)消去參數(shù)可得的直角坐標方程為,
將代入得的極坐標方程為,
又的參數(shù)方程為(為參數(shù),),
可得的極坐標方程為,
將代入得,
則,,
又,所以,,
此時,所以點的極坐標為.
(2)由的極坐標方程為,
可得的直角坐標方程為,所以圓心,
設,,將代入,
得,,
所以,,所以,,
又因為,,
所以.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐中,底面為菱形,,是邊長為2的正三角形,平面⊥平面,為的中點,為的中點.
(1)求證:平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)已知函數(shù)在區(qū)間上單調遞減,求實數(shù)的取值范圍.
(2)已知函數(shù),,討論函數(shù)的單調性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲袋中裝有2個白球,3個黑球,乙袋中裝有1個白球,2個黑球,這些球除顏色外完全相同.
(1)從兩袋中各取1個球,記事件:取出的2個球均為白球,求;
(2)每次從甲、乙兩袋中各取2個球,若取出的白球不少于2個就獲獎(每次取完后將球放回原袋),共取了3次,記獲獎次數(shù)為,寫出的分布列并求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)記,試判斷在區(qū)間內零點個數(shù)并說明理由;
(2)記(1)中的在內的零點為,,若在有兩個不等實根,判斷與的大小,并給出對應的證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的離心率為,且焦點到漸近線的距離為.
(1)求雙曲線的標準方程;
(2)若以為斜率的直線與雙曲線相交于兩個不同的點,,且線段的垂直平分線與兩坐標軸圍成的三角形的面積為,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com