(本小題滿分12分)已知函數(shù),其中.
(Ⅰ)若是的極值點,求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)若在上的最大值是,求的取值范圍 .
(Ⅰ)時,符合題意.
(Ⅱ)綜上,當時,的增區(qū)間是,減區(qū)間是;
當時,的增區(qū)間是,減區(qū)間是和;
當時,的減區(qū)間是;
當時,的增區(qū)間是;減區(qū)間是和.
(Ⅲ)在上的最大值是時,的取值范圍是.
【解析】本試題主要是考查了導數(shù)在研究函數(shù)中的運用。根據(jù)導數(shù)的符號判定函數(shù)的單調(diào)性和最值問題。
(1). 依題意,令,解得 .
(2)對于參數(shù)a進行分類討論得到不同情況下的單調(diào)性質(zhì)的證明
(3)在第二問的基礎(chǔ)上,根據(jù)單調(diào)性得到最值。
(Ⅰ)解:. 依題意,令,解得 . 經(jīng)檢驗,時,符合題意. ……4分
(Ⅱ)解:① 當時,.
故的單調(diào)增區(qū)間是;單調(diào)減區(qū)間是.
② 當時,令,得,或.
當時,與的情況如下:
↘ |
↗ |
↘ |
所以,的單調(diào)增區(qū)間是;單調(diào)減區(qū)間是和.
當時,的單調(diào)減區(qū)間是.
當時,,與的情況如下:
↘ |
↗ |
↘ |
所以,的單調(diào)增區(qū)間是;單調(diào)減區(qū)間是和.
③ 當時,的單調(diào)增區(qū)間是;單調(diào)減區(qū)間是.
綜上,當時,的增區(qū)間是,減區(qū)間是;
當時,的增區(qū)間是,減區(qū)間是和;
當時,的減區(qū)間是;
當時,的增區(qū)間是;減區(qū)間是和. ……10分
(Ⅲ)由(Ⅱ)知 時,在上單調(diào)遞增,由,知不合題意.
當時,在的最大值是,
由,知不合題意.
當時,在單調(diào)遞減,
可得在上的最大值是,符合題意.
所以,在上的最大值是時,的取值范圍是. …………12分
科目:高中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com