已知,.
(1)設(shè),求函數(shù)的圖像在處的切線方程;
(2)求證:對任意的恒成立;
(3)若,且,求證:.
(1);(2)詳見解析;(3)詳見解析.
解析試題分析:(1)先求導(dǎo)函數(shù),由導(dǎo)數(shù)的幾何意義知,切線斜率為,利用直線的點(diǎn)斜式方程可求;(2)構(gòu)造函數(shù),只需證明函數(shù)的最小值大于等于0即可,先求導(dǎo)得,,因?qū)?shù)等于0的根不易求出,再求導(dǎo)得,,可判斷,故遞增,且,故在單調(diào)遞減,在單調(diào)遞增 ∴得證;(3)結(jié)合已知條件或已經(jīng)得到的結(jié)論,得證明或判斷的條件,是構(gòu)造法求解問題的關(guān)鍵,由(2)知,依次將代數(shù)式放大,圍繞目標(biāo)從而證明不等式.
試題解析:(1),,則 ,∴圖像在處的切線方程為即 3分
(2)令, 4分
則
∵與同號 ∴ ∴
∴ ∴在單調(diào)遞增 6分
又,∴當(dāng)時(shí),;當(dāng)時(shí),
∴在單調(diào)遞減,在單調(diào)遞增 ∴
∴ 即對任意的恒成立 8分
(3)由(2)知 9分
則
11分
由柯西不等式得
∴ 13分
同理
三個(gè)不等式相加即得證。 &
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax3+(a-2)x+c的圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)若g(x)=-2ln x在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)圖象與直線相切,切點(diǎn)橫坐標(biāo)為.
(1)求函數(shù)的表達(dá)式和直線的方程;(2)求函數(shù)的單調(diào)區(qū)間;
(3)若不等式對定義域內(nèi)的任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)求在點(diǎn)(1,0)處的切線方程;
(2)判斷及在區(qū)間上的單調(diào)性;
(3)證明:在上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)其中a是實(shí)數(shù).設(shè),為該函數(shù)圖象上的兩點(diǎn),且.
(1)指出函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)的圖象在點(diǎn)A,B處的切線互相垂直,且,求的最小值;
(3)若函數(shù)f(x)的圖象在點(diǎn)A,B處的切線重合,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若,討論函數(shù)在區(qū)間上的單調(diào)性;
(2)若且對任意的,都有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某廠生產(chǎn)產(chǎn)品x件的總成本(萬元),已知產(chǎn)品單價(jià)P(萬元)與產(chǎn)品件數(shù)x滿足:,生產(chǎn)100件這樣的產(chǎn)品單價(jià)為50萬元,產(chǎn)量定為多少件時(shí)總利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在上是單調(diào)遞減函數(shù),
方程無實(shí)根,若“或”為真,“且”為假,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),().
(1)若有最值,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若存在、,使得曲線在與處的切線互相平行,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com