【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足an+Sn=2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證數(shù)列{an}中不存在三項(xiàng)按原來順序成等差數(shù)列.
【答案】
(1)解:當(dāng)n=1時(shí),a1+S1=2a1=2,則a1=1.
又an+Sn=2,所以an+1+Sn+1=2,兩式相減得an+1= an,
所以{an}是首項(xiàng)為1,公比為 的等比數(shù)列,
所以an=
(2)證明:假設(shè)存在三項(xiàng)按原來順序成等差數(shù)列,記為ap+1,aq+1,ar+1(p<q<r,且p,q,r∈N*),則2 = + ,所以22r﹣q=2r﹣p+1.①
又因?yàn)閜<q<r,所以r﹣q,r﹣p∈N*.
所以①式左邊是偶數(shù),右邊是奇數(shù),等式不成立,所以假設(shè)不成立,原命題得證
【解析】(1)由條件,再寫一式,兩式相減,可得{an}是首項(xiàng)為1,公比為 的等比數(shù)列,從而可求數(shù)列{an}的通項(xiàng)公式;(2)利用反證法,假設(shè)存在三項(xiàng)按原來順序成等差數(shù)列,從而引出矛盾,即可得到結(jié)論.
【考點(diǎn)精析】利用等差關(guān)系的確定對題目進(jìn)行判斷即可得到答案,需要熟知如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),即-=d ,(n≥2,n∈N)那么這個(gè)數(shù)列就叫做等差數(shù)列.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng),時(shí),證明:(其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,圓的極坐標(biāo)方程為,若以極點(diǎn)為原點(diǎn),極軸所在的直線為軸建立平面直角坐標(biāo)系.
(1)求圓的參數(shù)方程;
(2)在直線坐標(biāo)系中,點(diǎn)是圓上的動(dòng)點(diǎn),試求的最大值,并求出此時(shí)點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲正弦函數(shù)shx= 和雙曲余弦函數(shù)chx= 與我們學(xué)過的正弦函數(shù)和余弦函數(shù)有許多類似的性質(zhì),請類比正弦函數(shù)和余弦函數(shù)的和角公式,寫出雙曲正弦或雙曲余弦函數(shù)的一個(gè)類似的正確結(jié)論 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知長方體ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的點(diǎn),且BE⊥B1C.
(1)求CE的長;
(2)求證:A1C⊥平面BED;
(3)求A1B與平面BDE夾角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2ex﹣1﹣ x3﹣x2(x∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈(1,+∞)時(shí),用數(shù)學(xué)歸納法證明:n∈N* , ex﹣1> (其中n!=1×2×…×n).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下命題中,正確命題的序號是 . ①函數(shù)y=tanx在定義域內(nèi)是增函數(shù);
②函數(shù)y=2sin(2x+ )的圖象關(guān)于x= 成軸對稱;
③已知 =(3,4), =﹣2,則向量 在向量 的方向上的投影是﹣
④如果函數(shù)f(x)=ax2﹣2x﹣3在區(qū)間(﹣∞,4)上是單調(diào)遞減的,則實(shí)數(shù)a的取值范圍是(0, ].
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將邊長為的等邊沿軸正方向滾動(dòng),某時(shí)刻與坐標(biāo)原點(diǎn)重合(如圖),設(shè)頂點(diǎn)的軌跡方程是,關(guān)于函數(shù)有下列說法:
(1)的值域?yàn)?/span>;
(2)是周期函數(shù)且周期為;
(3);
(4)滾動(dòng)后,當(dāng)頂點(diǎn)第一次落在軸上時(shí),的圖象與軸所圍成的面積為
其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中, , , 是的中點(diǎn),△是等腰三角形, 為的中點(diǎn), 為上一點(diǎn);
(1)若∥平面,求;
(2)平面將三棱柱分成兩個(gè)部分,求含有點(diǎn)的那部分體積;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com