【題目】如圖,邊長為的正方形與梯形所在的平面互相垂直,已知,,,點在線段上.
(1)證明:平面平面;
(2)判斷點的位置,使得平面與平面所成的銳二面角為.
【答案】(1)證明過程見詳解;(2)點在線段的靠近點的三等分點處.
【解析】
(1)先由題中數(shù)據(jù),根據(jù)勾股定理,得到,再由面面垂直的性質(zhì)定理,得到,根據(jù)線面垂直的判定定理,以及面面垂直的判定定理,即可證明結(jié)論成立;
(2)先在面內(nèi)過點作,垂足為,根據(jù)題意,得到;,以點為坐標(biāo)原點,所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,設(shè),因為點在線段上,所以可設(shè),得到,再分別求出平面與平面的一個法向量,根據(jù)向量夾角公式,以及題中條件,即可求出結(jié)果.
(1)因為底面為梯形,,,所以,
又,所以,
因為,正方形邊長為,
所以,因此,
又因為平面平面,,平面平面,
所以平面,因此,
又,所以平面;
因為平面,所以平面平面;
(2)在面內(nèi)過點作,垂足為,因為,所以;
又因為平面,所以;
以點為坐標(biāo)原點,所在直線為軸,所在直線為軸,所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,
則,,,,
設(shè),因為點在線段上,所以可設(shè),
即,
所以,即,
設(shè)平面的一個法向量為,
則,所以,令,則,
又易知:平面,所以為平面的一個法向量,
所以,
解得:,所以,
即,點點在線段的靠近點的三等分點處.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,曲線C:就是其中之一(如圖).給出下列三個結(jié)論:
①曲線C恰好經(jīng)過6個整點(即橫、縱坐標(biāo)均為整數(shù)的點);
②曲線C上任意一點到原點的距離都不超過;
③曲線C所圍成的“心形”區(qū)域的面積小于3.
其中,所有正確結(jié)論的序號是
A. ①B. ②C. ①②D. ①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次不等式ax2+x+b>0的解集為(-∞,-2)∪(1,+∞).
(Ⅰ)求a和b的值;
(Ⅱ)求不等式ax2-(c+b)x+bc<0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙、丙三位同學(xué)在某次考試中總成績列前三名,有,,三位學(xué)生對其排名猜測如下::甲第一名,乙第二名;:丙第一名;甲第二名;:乙第一名,甲第三名.成績公布后得知,,,三人都恰好猜對了一半,則第一名是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點為F,圓,點為拋物線上一動點.已知當(dāng)的面積為.
(I)求拋物線方程;
(II)若,過P做圓C的兩條切線分別交y軸于M,N兩點,求面積的最小值,并求出此時P點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知二次函數(shù)(、、均為實常數(shù),)的最小值是0,函數(shù)的零點是和,函數(shù)滿足,其中,為常數(shù).
(1)已知實數(shù)、滿足、,且,試比較與的大小關(guān)系,并說明理由;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩種樹苗中各抽測了10株樹苗的高度,其莖葉圖如圖.根據(jù)莖葉圖,下列描述正確的是( )
A.甲種樹苗的平均高度大于乙種樹苗的平均高度,且甲種樹苗比乙種樹苗長得整齊
B.甲種樹苗的平均高度大于乙種樹苗的平均高度,但乙種樹苗比甲種樹苗長得整齊
C.乙種樹苗的平均高度大于甲種樹苗的平均高度,且乙種樹苗比甲種樹苗長得整齊
D.乙種樹苗的平均高度大于甲種樹苗的平均高度,但甲種樹苗比乙種樹苗長得整齊
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).M是曲線上的動點,將線段OM繞O點順時針旋轉(zhuǎn)得到線段ON,設(shè)點N的軌跡為曲線.以坐標(biāo)原點O為極點,軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)在(1)的條件下,若射線與曲線分別交于A, B兩點(除極點外),且有定點,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com