1.已知兩點(diǎn)A(4,5),B(-2,3),則$|\overrightarrow{AB}|$=2$\sqrt{10}$.

分析 利用向量坐標(biāo)運(yùn)算性質(zhì)、數(shù)量積運(yùn)算性質(zhì)即可得出.

解答 解:$\overrightarrow{AB}$=(-6,-2),
∴$|\overrightarrow{AB}|$=$\sqrt{(-6)^{2}+(-2)^{2}}$=$2\sqrt{10}$.
故答案為:2$\sqrt{10}$.

點(diǎn)評 本題考查了向量坐標(biāo)運(yùn)算性質(zhì)、數(shù)量積運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=\sqrt{3}sin2x+2{cos^2}x+1$.
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間和對稱中心;
(II)設(shè)△ABC內(nèi)角A,B,C的對邊分別為a,b,c,且$c=\sqrt{3},f(C)=3$,若向量$\overrightarrow m=(sinA,-1)$與向量$\overrightarrow n=(2,sinB)$垂直,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=logax+1(a>0且a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線$\frac{x}{m}$+$\frac{y}{n}$-4=0(m>0,n>0)上,則$\frac{1}{m}$+$\frac{1}{n}$=4;m+2n的最小值為$\frac{2\sqrt{2}+3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.以下四個命題中,真命題是( 。
A.?x∈(0,π),sinx=tanx
B.條件p:$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,條件q:$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$,則p是q的必要不充分條件
C.“?x∈R,x2+x+1>0”的否定是“?x0∈R,x02+x0+1<0”
D.?θ∈R,函數(shù)f(x)=sin(2x+θ)都不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知等差數(shù)列$\{a_n^{\;}\}$的前n項(xiàng)和為Sn,若a2+a8+a11=30,求S13=( 。
A.130B.65C.70D.140

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.四面體的頂點(diǎn)和各棱中點(diǎn)共10個點(diǎn),則由這10點(diǎn)構(gòu)成的直線中,有423對異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知tanθ=2,則2sin2θ+sinθcosθ=(  )
A.2B.$\frac{5}{6}$C.-$\frac{3}{4}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)的f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}≤φ≤\frac{π}{2}$)圖象關(guān)于直線x=$\frac{π}{3}$對稱,且圖象上相鄰兩個最高點(diǎn)的距離為π,若$f(\frac{α}{2})=\frac{{\sqrt{3}}}{4}$(0<α<π),則$sin(\frac{5π}{3}-α)$=( 。
A.$-\frac{{\sqrt{15}}}{4}$B.$\frac{{\sqrt{15}}}{4}$C.$±\frac{{\sqrt{15}}}{4}$D.$-\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ln(x+1)+$\frac{2a}{x+a}({a>0})$.
(I)討論函數(shù)f(x)在(0,+∞)上的單調(diào)性;
(II)設(shè)函數(shù)f(x)存在兩個極值點(diǎn),并記作x1,x2,若f(x1)+f(x2)>4,求正數(shù)a的取值范圍;
(III)求證:當(dāng)a=1時,f(x)>$\frac{1}{{{e^{x+1}}}}+\frac{1}{x+1}$(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

同步練習(xí)冊答案