正四棱錐P-ABCD的所有棱長(zhǎng)均相等,E是PC的中點(diǎn),那么異面直線BE與PA所成的角的余弦值等于
 
考點(diǎn):異面直線及其所成的角
專(zhuān)題:空間角
分析:根據(jù)異面直線所成角的定義先找出對(duì)應(yīng)的平面角即可得到結(jié)論.
解答: 解:連結(jié)AC,BD相交于O,
則O為AC的中點(diǎn),
∵E是PC的中點(diǎn),
∴OE是△PAC的中位線,
則OE∥
1
2
PA
,
則OE與BE所成的角即可異面直線BE與PA所成的角,
設(shè)四棱錐的棱長(zhǎng)為1,
則OE=
1
2
PA
=
1
2
,OB=
1
2
BD=
2
2
,BE=
3
2
,
則cos∠OEB=
OE2+BE2-OB2
2OE•BE
=
1
4
+
3
4
-
2
4
1
2
×
3
2
=
3
3
,
故答案為:
3
3
點(diǎn)評(píng):本題考查異面直線所成的角,作出角并能由三角形的知識(shí)求解是解決問(wèn)題的關(guān)鍵,屬中檔題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(
x
2
-
π
8
)=
2
3
,則cos(x+
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m、n是不同的直線,α、β是不重合的平面,給出下列命題:
①若α∥β,m?α,n?β,則m∥n;
②若m,n?α,m∥β,n∥β,則α∥β;
③若m∥α,n?α,則m∥n;
④若m∥n,m⊥α,則n⊥α.
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線x2=4y,過(guò)原點(diǎn)作斜率為1的直線交拋物線于第一象限內(nèi)一點(diǎn)P1,又過(guò)點(diǎn)P1作斜率為
1
2
的直線交拋物線于點(diǎn)P2,再過(guò)P2作斜率為
1
4
的直線交拋物線于點(diǎn)P3,-2<x<4,如此繼續(xù).一般地,過(guò)點(diǎn)3<x<5作斜率為
1
2n
的直線交拋物線于點(diǎn)Pn+1,設(shè)點(diǎn)Pn(xn,yn).
(1)求x3-x1的值;
(2)令bn=x2n+1-x2n-1,求證:數(shù)列{bn}是等比數(shù)列;
(3)記P(x,y)為點(diǎn)列P1,P3,…,P2n-1,…的極限點(diǎn),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:(2m+1)x+(m+1)y=7m+4,圓C:(x-1)2+(y-2)2=25
(1)求直線l經(jīng)過(guò)的定點(diǎn)坐標(biāo);
(2)求證:直線l與圓C總相交(提示:只需證明直線l經(jīng)過(guò)圓內(nèi)的一點(diǎn));
(3)求出相交弦長(zhǎng)的最小值及對(duì)應(yīng)的m值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,BC=
1
2
AD,PA=PD,Q為AD的中點(diǎn).
(1)求證:AD⊥平面PBQ;
(2)已知點(diǎn)M為線段PC的中點(diǎn),證明:PA∥平面BMQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=-x2-4x+1,x∈[-4,1],的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)曲線y=
x+1
x-1
在點(diǎn)(3,2)處的切線與直線ax-y+1=0平行,則a=( 。
A、2
B、-2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α是平面,m,n是直線,則下列命題正確的是( 。
A、若m∥n,m∥α,則n∥α
B、若m⊥α,n∥α,則m⊥n
C、若m⊥α,m⊥n,則n⊥α
D、若m∥α,n∥α,則m∥n

查看答案和解析>>

同步練習(xí)冊(cè)答案