【題目】某省每年損失耕地20萬畝,每畝耕地價值24000元,為了減少耕地損失,決定按耕地價格的t%征收耕地占用稅,這樣每年的耕地損失可減少 t萬畝,為了既可減少耕地的損失又保證此項稅收一年不少于9000萬元,則t的取值范圍是(
A.[1,3]
B.[3,5]
C.[5,7]
D.[7,9]

【答案】B
【解析】解:由題意知征收耕地占用稅后每年損失耕地為(20﹣ t)萬畝, 則稅收收入為(20﹣ t)×24000×t%.
由題意(20﹣ t)×24000×t%≥9000,
整理得t2﹣8t+15≤0,解得3≤t≤5.
∴當耕地占用稅率為3%~5%時,既可減少耕地損失又可保證一年稅收不少于9000萬元.
∴t的范圍是[3,5].
故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式ax2+bx+c>0的解集為{x|﹣ <x<2},則cx2+bx+a<0的解集為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】f(x)是定義在R上的奇函數(shù),且當x∈(0,+∞)時,f(x)=2016x+log2016x,則函數(shù)f(x)的零點的個數(shù)是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(Ⅰ)求平行于直線x﹣2y+1=0,且與它的距離為2 的直線方程; (Ⅱ)求經(jīng)過兩直線l1:x﹣2y+4=0和l2:x+y﹣2=0的交點P,且與直線l3:2x+3y+1=0垂直的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖在四面體OABC中,OA,OB,OC兩兩垂直,且OB=OC=3,OA=4,給出如下判斷: ①存在點D(O點除外),使得四面體DABC有三個面是直角三角形;
②存在點D,使得點O在四面體DABC外接球的球面上;
③存在唯一的點D使得OD⊥平面ABC;
④存在點D,使得四面體DABC是正棱錐;
⑤存在無數(shù)個點D,使得AD與BC垂直且相等.
其中正確命題的序號是(把你認為正確命題的序號填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列{an}中,a1=64,公比q≠1,a2 , a3 , a4又分別是某個等差數(shù)列的第7項,第3項,第1項.
(1)求an;
(2)設bn=log2an , 求數(shù)列{|bn|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的中心在原點,焦點在x軸上,離心率為 ,短軸長為4 . (Ⅰ)求橢圓C的標準方程;
(Ⅱ)直線x=2與橢圓C交于P、Q兩點,A、B是橢圓O上位于直線PQ兩側的動點,且直線AB的斜率為
①求四邊形APBQ面積的最大值;
②設直線PA的斜率為k1 , 直線PB的斜率為k2 , 判斷k1+k2的值是否為常數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 =(2cosx,sinx﹣cosx), =( sinx,sinx+cosx),記函數(shù)f(x)= . (Ⅰ)求f(x)的表達式,以及f(x)取最大值時x的取值集合;
(Ⅱ)設△ABC三內(nèi)角A,B,C的對應邊分別為a,b,c,若a+b=2 ,c= ,f(C)=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥側面A1B1BA,且AA1=AB=BC=2,則AC與平面A1BC所成角為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案