【題目】△ABC中,a,b,c分別是角A,B,C所對(duì)的邊,已知向量 =(cosA,sinA), =(cosB,﹣sinB),且| |=1.
(1)求角C的度數(shù);
(2)若c=3,求△ABC面積的最大值.

【答案】
(1)解:∵ =(cosA,sinA), =(cosB,﹣sinB),

=(cosA﹣cosB,sinA+sinB),

又| |=1.

=1,

化為2﹣2cos(A+B)=1,

∴cosC=﹣ ,

∵C∈(0,π),

∴C=


(2)解:當(dāng)c=3時(shí),c2=a2+b2﹣2abcosC,

∴9≥2ab﹣2ab× ,∴ab≤3,

∴S= ab

當(dāng)且僅當(dāng)a=b= 時(shí)取等號(hào).

∴△ABC面積的最大值為


【解析】(1)利用向量的坐標(biāo)運(yùn)算與模的計(jì)算公式可得: =1,利用兩角和差的余弦公式、同角三角函數(shù)基本關(guān)系式化為2﹣2cos(A+B)=1,即可得出.(2)當(dāng)c=3時(shí),利用余弦定理可得c2=a2+b2﹣2abcosC,再利用基本不等式的性質(zhì)與三角形面積計(jì)算公式即可得出.
【考點(diǎn)精析】本題主要考查了余弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握余弦定理:;;才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a∈R,若x>0時(shí)均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1是某縣參加2007年高考的學(xué)生身高條形統(tǒng)計(jì)圖,從左到右的各條形表示的學(xué)生人數(shù)依次記為A1 , A2 , …,A10(如A2表示身高(單位:cm)在[150,155)內(nèi)的學(xué)生人數(shù))圖2是統(tǒng)計(jì)圖1中身高在一定范圍內(nèi)學(xué)生人數(shù)的一個(gè)算法流程圖.現(xiàn)要統(tǒng)計(jì)身高在160~180cm(含160cm,不含180cm)的學(xué)生人數(shù),那么在流程圖中的判斷框內(nèi)應(yīng)填寫的條件是(

A.i<6
B.i<7
C.i<8
D.i<9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+|x﹣a|+1,x∈R,a∈R.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的最小值;
(Ⅱ)若函數(shù)f(x)的最小值為g(a),令m=g(a),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,A= ,cosB=
(1)求cosC;
(2)設(shè)BC= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)場(chǎng)預(yù)算用5600元購(gòu)買單價(jià)為50元(每噸)的鉀肥和20元(每噸)的氮肥,希望使兩種肥料的總數(shù)量(噸)盡可能的多,但氮肥數(shù)不少于鉀肥數(shù),且不多于鉀肥數(shù)的1.5倍.
(Ⅰ)設(shè)買鉀肥x噸,買氮肥y噸,按題意列出約束條件、畫出可行域,并求鉀肥、氮肥各買多少才行?
(Ⅱ)已知A(10,0),O是坐標(biāo)原點(diǎn),P(x,y)在(Ⅰ)中的可行域內(nèi),求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=logmx(m為常數(shù),m>0且m≠1),設(shè)f(a1),f(a2),…,f(an)(n∈N+)是首項(xiàng)為4,公差為2的等差數(shù)列.
(Ⅰ)求證:數(shù)列l(wèi)ogman=2n+2,{an}是等比數(shù)列;
(Ⅱ)若bn=anf(an),記數(shù)列{bn}的前n項(xiàng)和為Sn , 當(dāng)m= 時(shí),求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四邊形,且AB=1,BC=2,∠ABC=60°,E為BC的中點(diǎn),AA1⊥平面ABCD. (Ⅰ)證明:平面A1AE⊥平面A1DE;
(Ⅱ)若DE=A1E,試求二面角E﹣A1C﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不交于同一點(diǎn)的三條直線l1:4x+y﹣4=0,l2:mx+y=0,l3:x﹣my﹣4=0
(1)當(dāng)這三條直線不能圍成三角形時(shí),求實(shí)數(shù)m的值.
(2)當(dāng)l3與l1 , l2都垂直時(shí),求兩垂足間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案