已知一圓C的圓心為C(2,-1)且該圓被直線l:x-y-1=0截得弦長為2
2
,求該圓方程.
由于圓心C(2,-1)到直線l:x-y-1=0的距離為d=
|2+1-1|
2
=
2
,
弦長為 2
2
,故半徑為r=
(
2
)
2
+(
2
2
2
)
2
=2,
故該圓的標(biāo)準(zhǔn)方程為 (x-2)2+(y+1)2=4.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(幾何證明選講選做題)如圖,PA切于點(diǎn)A,割線
PBC經(jīng)過圓心O,OB="PB=1," OA繞點(diǎn)O逆時針旋轉(zhuǎn)60°到OD,
則PD的長為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

圓心為(1,1)且與直線x+y=4相切的圓的方程是( 。
A.(x-1)2+(y-1)2=2B.(x-1)2+(y-1)2=4
C.(x+1)2+(y+1)2=2D.(x+1)2+(y+1)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若圓C經(jīng)過點(diǎn)A(-1,5),B(5,5,),C(6,-2)三點(diǎn).
(1)求圓C的圓心和半徑;
(2)求過點(diǎn)(0,6)且與圓C相切的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

試求以橢圓
x2
169
+
y2
144
=1的右焦點(diǎn)為圓心,且與雙曲線
x2
9
-
y2
16
=1的漸近線相切的圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

經(jīng)過圓x2-4x+y2+2y=0的圓心,且與直線x-2y-3=0平行的直線方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

圓心是(1,-2),半徑是4的圓的標(biāo)準(zhǔn)方程是(  )
A.(x-1)2+(y+2)2=4B.(x-1)2+(y+2)2=16
C.(x+1)2+(y-2)2=4D.(x+1)2+(y-2)2=16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若兩條直線y=x+2a,y=2x+a的交點(diǎn)P在圓(x-1)2+(y-1)2=4的內(nèi)部,則實(shí)數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

求以為直徑兩端點(diǎn)的圓的方程為                     。

查看答案和解析>>

同步練習(xí)冊答案