如圖,已知橢圓分別為其左右焦點(diǎn),A為左頂點(diǎn),直線(xiàn)l的方程為x=4,過(guò)F2的直線(xiàn)l′與橢圓交于異于A的P、Q兩點(diǎn).
(Ⅰ)求的取值范圍;
(Ⅱ)若求證:M、N兩點(diǎn)的縱坐標(biāo)之積為定值;并求出該定值.
解:(Ⅰ)①當(dāng)直線(xiàn)PQ的斜率不存在時(shí),
由F2(1,0)可知PQ方程為代入橢圓
,   
②當(dāng)直線(xiàn)PQ的斜率存在時(shí),
設(shè)PQ方程為代入橢圓



                  
綜上,的取值范圍是
(Ⅱ)AP的方程為
同理,得

1°當(dāng)k不存在時(shí),=-9 
2°當(dāng)k存在時(shí), =-9
∴M,N兩點(diǎn)的縱坐標(biāo)之積為定值-9  
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
過(guò)點(diǎn).(1,
2
2
)
,離心率為
2
2
,左、右焦點(diǎn)分別為F1、F2.點(diǎn)p為直線(xiàn)l:x+y=2上且不在x軸上的任意一點(diǎn),直線(xiàn)PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D,O為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線(xiàn)PF1、PF2的斜線(xiàn)分別為k1、k2.①證明:
1
k1
-
3
k2
=2
;②問(wèn)直線(xiàn)l上是否存在點(diǎn)P,使得直線(xiàn)OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿(mǎn)足kOA+kOB+kOC+kOD=0?若存在,求出所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知橢圓C過(guò)點(diǎn)M(2,1),兩個(gè)焦點(diǎn)分別為(-
6
,0)、(
6
,0)
,O為坐標(biāo)原點(diǎn),平行于OM的直線(xiàn)l交橢圓C于不同的兩點(diǎn)A、B,
(Ⅰ)求橢圓C的方程;
(Ⅱ)試問(wèn)直線(xiàn)MA、MB的斜率之和是否為定值,若為定值,求出以線(xiàn)段AB為直徑且過(guò)點(diǎn)M的圓的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆河北省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本題滿(mǎn)分12分)如圖,已知橢圓焦點(diǎn)為,雙曲線(xiàn),設(shè)是雙曲線(xiàn)上異于頂點(diǎn)的任一點(diǎn),直線(xiàn)與橢圓的交點(diǎn)分別為

(1)   設(shè)直線(xiàn)的斜率分別為,求的值;

(2)   是否存在常數(shù),使得恒成立?若存在,試求出的值;若不存在,請(qǐng)說(shuō)明理由。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北省衡水中學(xué)高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知橢圓焦點(diǎn)為F1、F2,雙曲線(xiàn)G:x2-y2=4,設(shè)P是雙曲線(xiàn)G上異于頂點(diǎn)的任一點(diǎn),直線(xiàn)PF1、PF2與橢圓的交點(diǎn)分別為A、B和C、D.
(1)設(shè)直線(xiàn)PF1、PF2的斜率分別為k1和k2,求k1•k2的值;
(2)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,試求出λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案