【題目】如圖,在四棱錐中,側(cè)面底面為正三角形,,,點,分別為線段、的中點,分別為線段、上一點,且.

(1)確定點的位置,使得平面

(2)試問:直線上是否存在一點,使得平面與平面所成銳二面角的大小為,若存在,求的長;若不存在,請說明理由.

【答案】(1)詳見解析 (2)存在點,且

【解析】(1)為線段的靠近的三等分點.

在線段上取一點,使得,因為,,因為中點,,當為線段靠近的三等分點時,即,,又易知,.又,所以平面平面,因為平面,所以平面.

(2)取中點,連接,因為為正三角形,所以,又側(cè)面底面,所以底面,以所在直線軸,的中垂線為軸,所在直線軸,建立空間直角坐標系,如圖所示,則,,設(shè),則,設(shè)平面的法向量為,則,即,令,得平面的一個法向量為,易得平面的一個法向量為,所以,解得,故存在點,且.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如下圖,已知橢圓的上頂點為,左、右頂點為,右焦點為, ,且的周長為14.

I)求橢圓的離心率;

II)過點的直線與橢圓相交于不同兩點,點N在線段上.設(shè),試判斷點是否在一條定直線上,并求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】編號為A,B,CD,E5個小球放在如圖所示的5個盒子里,要求每個盒子只能放1個小球,且A球不能放在1,2號盒子里,B球必須放在與A球相鄰的盒子中,求不同的放法有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)若,求曲線在點處的切線方程;

(Ⅱ)當時,函數(shù)的兩個極值點為 ,且.求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)某校新、老校區(qū)之間開車單程所需時間為, 只與道路暢通狀況有關(guān),對其容量為的樣本進行統(tǒng)計,結(jié)果如圖:

(分鐘)

25

30

35

40

頻數(shù)(次)

20

30

40

10

1)求的分布列與數(shù)學期望

2)劉教授駕車從老校區(qū)出發(fā),前往新校區(qū)做一個50分鐘的講座,結(jié)束后立即返回老校區(qū),求劉教授從離開老校區(qū)到返回老校區(qū)共用時間不超過120分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,我海監(jiān)船在島海域例行維權(quán)巡航,某時刻航行至處,此時測得其東北方向與它相距海里的處有一外國船只,且島位于海監(jiān)船正東海里處.

1)求此時該外國船只與島的距離;

2)觀測中發(fā)現(xiàn),此外國船只正以每小時海里的速度沿正南方向航行,為了將該船攔截在離海里處,不讓其進入海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值.(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與橢圓相交于兩點,與軸, 軸分別相交于點和點,且,點是點關(guān)于軸的對稱點, 的延長線交橢圓于點,過點分別做軸的垂線,垂足分別為.

(1)橢圓的左、右焦點與其短軸的一個端點是正三角形的三個頂點,點在橢圓上,求橢圓的方程;

(2)當時,若點平分線段,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某土特產(chǎn)銷售總公司為了解其經(jīng)營狀況,調(diào)查了其下屬各分公司月銷售額和利潤,得到數(shù)據(jù)如下表:

分公司名稱

雅雨

雅魚

雅女

雅竹

雅茶

月銷售額(萬元)

3

5

6

7

9

月利潤額(萬元)

2

3

3

4

5

在統(tǒng)計中發(fā)現(xiàn)月銷售額和月利潤額具有線性相關(guān)關(guān)系.

(1)根據(jù)如下的參考公式與參考數(shù)據(jù),求月利潤額與月銷售額之間的線性回歸方程;

(2)若該總公司還有一個分公司“雅果”月銷售額為10萬元,試估計它的月利潤額是多少?

(參考公式: ,其中:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地最近十年糧食需求量逐年上升,下表是部分統(tǒng)計數(shù)據(jù):

年份

2006

2008

2010

2012

2014

需求量(萬噸)

236

246

257

276

286

(1)利用所給數(shù)據(jù)求年需求量與年份之間的回歸方程x+;

(2)利用(1)中所求出的直線方程預(yù)測該地2018年的糧食需求量.

查看答案和解析>>

同步練習冊答案