已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),證明:對任意,.
(Ⅰ)分類討論得到單調(diào)性      (Ⅱ)構(gòu)造函數(shù)用導(dǎo)數(shù)的方法證明.      

試題分析:(Ⅰ) f(x)的定義域為(0,+),  
當(dāng)a≥0時,>0,故f(x)在(0,+)單調(diào)增加;
當(dāng)a≤-1時,<0, 故f(x)在(0,+)單調(diào)減少;
當(dāng)-1<a<0時,令=0,解得x=.當(dāng)x∈(0, )時, >0;
x∈(,+)時,<0, 故f(x)在(0, )單調(diào)增加,在(,+)單調(diào)減少   
(Ⅱ)不妨設(shè)x1≥x2.由于a≤-2,故f(x)在(0,+)單調(diào)減少.
所以等價于≥4x1-4x2,
即f(x2)+ 4x2≥f(x1)+ 4x1.         
令g(x)=f(x)+4x,則+4=.               
于是≤0.
從而g(x)在(0,+)單調(diào)減少,故g(x1) ≤g(x2),即 f(x1)+ 4x1≤f(x2)+ 4x2,
故對任意x1,x2∈(0,+) ,.
點評:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及函數(shù)的最值問題,考查分類討論思想,考查學(xué)生綜合運用知識分析問題解決問題的能力,屬難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=(
1
2
)x
,當(dāng)定義域[1,+∞)時,值域為( 。
A.(0,
1
2
]
B.[
1
2
,+∞)
C.(-∞,
1
2
]
D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義在R上的函數(shù)是增函數(shù),且函數(shù)的圖像關(guān)于(3,0)成中心對稱,若滿足不等式,當(dāng)時,則的取值范圍為____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè) 
(1)當(dāng),求的取值范圍;
(2)若對任意,恒成立,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)S,T是R的兩個非空子集,如果存在一個從S到T的函數(shù)滿足:
(i)(ii)對任意
那么稱這兩個集合“保序同構(gòu)”,現(xiàn)給出以下3對集合:



其中,“保序同構(gòu)”的集合對的序號是_______.(寫出“保序同構(gòu)”的集合對的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)奇函數(shù)的定義域為R,最小正周期,若,則的取值范圍是
A. B.
C.  D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某單位決定投資3200元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻,地面利用原地面均不花錢,正面用鐵柵,每米長造價40元,兩側(cè)墻砌磚,每米長造價45元,屋頂每平方米造價20元.
(1)倉庫面積的最大允許值是多少?
(2)為使面積達到最大而實際投入又不超過預(yù)算,正面鐵柵應(yīng)設(shè)計為多長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)證明函數(shù)的圖像關(guān)于點對稱;
(2)若,求;
(3)在(2)的條件下,若 ,為數(shù)列的前項和,若對一切都成立,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù)
(1)若對一切實數(shù)x恒成立,求實數(shù)a的取值范圍。
(2)求在區(qū)間上的最小值的表達式。

查看答案和解析>>

同步練習(xí)冊答案