【題目】(文科)已知函數(shù).

(1)若,求曲線在點(diǎn)處的切線方程;

(2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1) ; (2) .

【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),計(jì)算,根據(jù)點(diǎn)斜式可求切線方程;(2)求出函數(shù)的導(dǎo)數(shù),通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,求出的最大值,結(jié)合對(duì)任意恒成立,求出的取值范圍即可.

試題解析:(1)由,得,則

, .

所以曲線在點(diǎn)處的切線方程為,即.

(2)已知對(duì)任意恒成立,

①當(dāng)時(shí),

, 上單調(diào)遞減,

,恒成立.

②當(dāng)時(shí),二次函數(shù)的開口方向向下,對(duì)稱軸為,且

所以當(dāng)時(shí), , , 上單調(diào)遞減,

,恒成立.

③當(dāng)時(shí),二次函數(shù)的開口方向向上,對(duì)稱軸為,

所以上單調(diào)遞增,且,

故存在唯一,使得,即.

當(dāng)時(shí), , 單調(diào)遞減;

當(dāng)時(shí), , , 單調(diào)遞增.

所以在上, .

所以

綜上,得取值范圍是.

【方法點(diǎn)晴】本題主要考查利用導(dǎo)數(shù)求函數(shù)的最值以及不等式恒成立問題,屬于難題.不等式恒成立問題常見方法:① 分離參數(shù)恒成立(可)或恒成立(即可);② 數(shù)形結(jié)合(圖象在 上方即可);③ 討論最值恒成立;④ 討論參數(shù).本題是利用方法 ③ 求得的范圍的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左頂點(diǎn)為,右焦點(diǎn)為,過點(diǎn)且斜率為1的直線交橢圓于另一點(diǎn),交軸于點(diǎn)

(1)求橢圓的方程;

(2)過點(diǎn)作直線與橢圓交于兩點(diǎn),連接為坐標(biāo)原點(diǎn))并延長交橢圓于點(diǎn),求面積的最大值及取最大值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是平行四邊形所在平面外一點(diǎn), 平面, , .

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=2,點(diǎn)E、F分別在邊AB、DC上,M為AD的中點(diǎn),且 =0,則△MEF的面積的取值范圍為(

A.
B.[1,2]
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)實(shí)數(shù)滿足,若目標(biāo)函數(shù)的最大值為6,則的最小值為( )

A. B. C. D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間共有名工人,隨機(jī)抽取6名,他們某日加工零件個(gè)數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).

(Ⅰ) 根據(jù)莖葉圖計(jì)算樣本均值;

(Ⅱ) 日加工零件個(gè)數(shù)大于樣本均值的工人為優(yōu)秀工人,根據(jù)莖葉圖推斷該車間名工人中有幾名優(yōu)秀工人;

(Ⅲ) 從該車間名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間共有名工人,隨機(jī)抽取6名,他們某日加工零件個(gè)數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).

(Ⅰ) 根據(jù)莖葉圖計(jì)算樣本均值;

(Ⅱ) 日加工零件個(gè)數(shù)大于樣本均值的工人為優(yōu)秀工人,根據(jù)莖葉圖推斷該車間名工人中有幾名優(yōu)秀工人;

(Ⅲ) 從該車間名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的焦點(diǎn)、軸上,且橢圓經(jīng)過,過點(diǎn)的直線交于點(diǎn),與拋物線 交于、兩點(diǎn),當(dāng)直線時(shí)的周長為

(Ⅰ)求的值和的方程;

(Ⅱ)以線段為直徑的圓是否經(jīng)過上一定點(diǎn),若經(jīng)過一定點(diǎn)求出定點(diǎn)坐標(biāo),否則說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(n)=n2sin ),且an=f(n)+f(n+1),則a1+a2+a3+…+a2016的值為

查看答案和解析>>

同步練習(xí)冊(cè)答案