下列關(guān)于數(shù)列的命題
①若數(shù)列{an}是等差數(shù)列,且p+q=r(p,q,r為正整數(shù))則ap+aq=ar
②若數(shù)列{an}滿足an+1=2an,則{an}是公比為2的等比數(shù)列
③2和8的等比中項(xiàng)為±4
④已知等差數(shù)列{an}的通項(xiàng)公式為an=f(n),則f(n)是關(guān)于n的一次函數(shù)
其中真命題的個(gè)數(shù) 為( )
A.1
B.2
C.3
D.4
【答案】分析:①若數(shù)列{an}是等差數(shù)列,且p+q=r(p,q,r為正整數(shù))則ap+aq=ar,等差數(shù)列的性質(zhì)判斷;
②若數(shù)列{an}滿足an+1=2an,則{an}是公比為2的等比數(shù)列,用用數(shù)列的類型來研究;
③2和8的等比中項(xiàng)為±4,用等比數(shù)列的性質(zhì)判斷;
④已知等差數(shù)列{an}的通項(xiàng)公式為an=f(n),則f(n)是關(guān)于n的一次函數(shù),用數(shù)列的類型來判斷.
解答:解:①若數(shù)列{an}是等差數(shù)列,且p+q=r(p,q,r為正整數(shù))則ap+aq=ar,不是正確命題,應(yīng)ap+aq=2ar
②若數(shù)列{an}滿足an+1=2an,則{an}是公比為2的等比數(shù)列,不是真命題,如:0,0,0,…
③2和8的等比中項(xiàng)為±4,正確,可由等比數(shù)列的性質(zhì)證明出來.
④已知等差數(shù)列{an}的通項(xiàng)公式為an=f(n),則f(n)是關(guān)于n的一次函數(shù)不是真命題,如如:0,0,0,…
故選A
點(diǎn)評:本題考查命題真假判斷與應(yīng)用,求解此類題的關(guān)鍵是要對命題涉及的知識與定理、定義等有很好的理解與掌握.本題中舉反例時(shí)易因?yàn)?,0,0,…太特殊了而想不到,學(xué)習(xí)時(shí)應(yīng)該對各類數(shù)列進(jìn)行分類歸納,明確其性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于數(shù)列的命題中,正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于數(shù)列的命題
①若數(shù)列{an}是等差數(shù)列,且p+q=r(p,q,r為正整數(shù))則ap+aq=ar
②若數(shù)列{an}滿足an+1=2an,則{an}是公比為2的等比數(shù)列
③2和8的等比中項(xiàng)為±4
④已知等差數(shù)列{an}的通項(xiàng)公式為an=f(n),則f(n)是關(guān)于n的一次函數(shù)
其中真命題的個(gè)數(shù) 為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省等三校高三2月月考數(shù)學(xué)文卷 題型:選擇題

下列關(guān)于數(shù)列的命題

① 若數(shù)列是等差數(shù)列,且為正整數(shù))則 

② 若數(shù)列是公比為2的等比數(shù)列

③ 2和8的等比中項(xiàng)為±4                           

④ 已知等差數(shù)列的通項(xiàng)公式為,則是關(guān)于的一次函數(shù)

其中真命題的個(gè)數(shù)為                                                (     )

A.1        B.2         C.3       D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東模擬 題型:單選題

下列關(guān)于數(shù)列的命題
①若數(shù)列{an}是等差數(shù)列,且p+q=r(p,q,r為正整數(shù))則ap+aq=ar
②若數(shù)列{an}滿足an+1=2an,則{an}是公比為2的等比數(shù)列
③2和8的等比中項(xiàng)為±4
④已知等差數(shù)列{an}的通項(xiàng)公式為an=f(n),則f(n)是關(guān)于n的一次函數(shù)
其中真命題的個(gè)數(shù) 為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案