(本題12分)設(shè)等差數(shù)列第10項(xiàng)為24,第25項(xiàng)為-21
(1)求這個(gè)數(shù)列的通項(xiàng)公式;(2)設(shè)為其前n項(xiàng)和,求使取最大值時(shí)的n值。

= 
(2)  當(dāng)n=17或18時(shí),有最大值

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在等差數(shù)列中,,其前項(xiàng)和為,等比數(shù)列的各項(xiàng)均為正數(shù),,公比為,且,
(Ⅰ)求;
(Ⅱ)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)已知數(shù)列滿足,.
(1)求的通項(xiàng)公式;
(2)若,且,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分) 設(shè)是函數(shù)圖象上任意兩點(diǎn),且
(Ⅰ)求的值;
(Ⅱ)若(其中),求
(Ⅲ)在(Ⅱ)的條件下,設(shè)),若不等式對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第二項(xiàng),第五項(xiàng),第十四項(xiàng)分別是等比數(shù)列{bn}的第二項(xiàng),第三項(xiàng),第四項(xiàng).
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}對(duì)任意自然數(shù)n,均有,
求通項(xiàng)公式Cc1+c2+c3+……+c2006

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知正項(xiàng)等差數(shù)列的前項(xiàng)和為,若,且成等比數(shù)列.
(1)求的通項(xiàng)公式;
(2)記的前項(xiàng)和為,求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求前n項(xiàng)和的最大值,并求出相應(yīng)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)是公差不為零的等差數(shù)列,為其前項(xiàng)和,滿足、成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列滿足:,,為數(shù)列的前項(xiàng)和,問(wèn)是否存在正整數(shù),使得成立?若存在,求出;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知在遞增等差數(shù)列中,,成等比數(shù)列,數(shù)列的前n項(xiàng)和為,且.
(1)求數(shù)列、的通項(xiàng)公式;(2)設(shè),求數(shù)列的前

查看答案和解析>>

同步練習(xí)冊(cè)答案