某投資公司投資甲、乙兩個(gè)項(xiàng)目所獲得的利潤(rùn)分別是P(億元)和Q億元),它們與投資額t(億元)的關(guān)系有經(jīng)驗(yàn)公式其中,今該公司將5億元投資這兩個(gè)項(xiàng)目,其中對(duì)甲項(xiàng)目投資x(億元),投資這兩個(gè)項(xiàng)目所獲得的總利潤(rùn)為y(億元),
(1)求y關(guān)于x的解析式,
(2)怎樣投資才能使總利潤(rùn)最大,最大值為多少?.
(1)  ∈[0,5],;(2)當(dāng)時(shí),甲項(xiàng)目投資億元,乙項(xiàng)目投資億元,總利潤(rùn)的最大值是億元;當(dāng) 時(shí),甲項(xiàng)目投資億元,乙項(xiàng)目投資不投資,總利潤(rùn)的最大值是億元.

試題分析:(1)對(duì)甲、乙公司投資所獲利潤(rùn)分別為∴投資這兩個(gè)項(xiàng)目所獲得的總利潤(rùn)為 ∈[0,5],;(2)只需求函數(shù)的最大值就可以了,考慮到和(的關(guān)系,可用換元法,將其轉(zhuǎn)換為二次函數(shù)求最值問題,令,則 ,,只需討論對(duì)稱軸和定義域的位置關(guān)系即可求其最大值.
試題解析:(1)根據(jù)題意,得: ∈[0,5],.  4分
(2)令,則       
           8分
當(dāng)時(shí),即,當(dāng)時(shí),,此時(shí)
當(dāng)時(shí),即,當(dāng) 時(shí),,此時(shí) 12分   
答:當(dāng)時(shí),甲項(xiàng)目投資億元,乙項(xiàng)目投資億元,總利潤(rùn)的最大值是億元;當(dāng) 時(shí),甲項(xiàng)目投資億元,乙項(xiàng)目投資不投資,總利潤(rùn)的最大值是億元  14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是偶函數(shù).
(1)求的值;
(2)證明:對(duì)任意實(shí)數(shù),函數(shù)的圖像與直線最多只有一個(gè)交點(diǎn);
(3)設(shè)若函數(shù)的圖像有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

近年來,網(wǎng)上購(gòu)物已經(jīng)成為人們消費(fèi)的一種趨勢(shì)。假設(shè)某淘寶店的一種裝飾品每月的銷售量y(單位:千件)與銷售價(jià)格x(單位:元/件)滿足關(guān)系式其中2<x<6,m為常數(shù),已知銷售價(jià)格為4元/件時(shí),每月可售出21千件。(1)求m的值; (2)假設(shè)該淘寶店員工工資、辦公等每月所有開銷折合為每件2元(只考慮銷售出的件數(shù)),試確定銷售價(jià)格x的值,使該店每月銷售飾品所獲得的利潤(rùn)最大.(結(jié)果保留一位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將進(jìn)貨單價(jià)為80元的商品按90元一個(gè)售出時(shí),能賣出400個(gè),已知該商品每個(gè)漲價(jià)1元,其銷售量就減少20個(gè),為了賺得最大利潤(rùn),售價(jià)應(yīng)定為(       )
A.每個(gè)95元 B.每個(gè)100元C.每個(gè)105元D.每個(gè)110元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對(duì)于在區(qū)間[a,b]上有意義的兩個(gè)函數(shù),如果對(duì)于區(qū)間[a,b]中的任意x均有,則稱在[a,b]上是“密切函數(shù)”, [a,b]稱為“密切區(qū)間”,若函數(shù)在區(qū)間[a,b]上是“密切函數(shù)”,則的最大值為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對(duì)于函數(shù),
①過該函數(shù)圖像上一點(diǎn)()的切線的斜率為
②函數(shù)的最小值為    
③該函數(shù)圖像與軸有4個(gè)交點(diǎn)
④函數(shù)上為減函數(shù),在上也為減函數(shù)
其中正確命題的序號(hào)為                  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若方程的解所在區(qū)間為,則          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義區(qū)間,,,的長(zhǎng)度均為. 用表示不超過的最大整數(shù),記,其中.設(shè),若用表示不等式解集區(qū)間的長(zhǎng)度,則當(dāng)時(shí),有(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.已知函數(shù),則等于    (    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案