在△ABC中,D是BC的中點(diǎn),E是DC的中點(diǎn),若
AB
=
a
,
AC
=
b
,則
AE
=
 
考點(diǎn):向量加減混合運(yùn)算及其幾何意義
專題:平面向量及應(yīng)用
分析:利用向量的三角形法則和中點(diǎn)的意義解答.
解答: 解:由題意在△ABC中,D是BC的中點(diǎn),E是DC的中點(diǎn),
得到
AD
=
1
2
(
AB
+
AC
)=
1
2
(
a
+
b
)
,
AE
=
1
2
(
AD
+
AC
)
=
1
2
[
1
2
(
a
+
b
)+
b
]
=
1
4
a
+
3
4
b

故答案為:
1
4
a
+
3
4
b
點(diǎn)評:本題考查了三角形中位線的向量性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知B在原點(diǎn),C點(diǎn)坐標(biāo)為(0,2),且
|AB|
|AC|
=
2
,求點(diǎn)A的軌跡方程,并說明軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}、{bn}滿足an=2bn+1,{bn}是首項(xiàng)為1,公差為1的等差數(shù)列.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
m
n
,其中向量
m
=(-
3
cosx,cosx+sinx),
n
=(sinx,
cosx-sinx
2
),x∈R.
(1)求函數(shù)f(x)的最小正周期與單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形ABC的頂點(diǎn)坐標(biāo)為A(-1,5)、B(-2,-1)、C(4,3),M是BC邊上的中點(diǎn).
(1)求AB邊所在的直線方程;
(2)求BC邊上的垂直平分線所在直線方程;
(3)求以線段AM為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足條件
x>0
y≤1
2x-2y+1≤0
,若目標(biāo)函數(shù)z=mx-y(m≠0)取得最大值時(shí)的最優(yōu)解有無窮多個(gè),則實(shí)數(shù)m值為( 。
A、1
B、
1
2
C、-
1
2
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
y2
a2
+
x2
b2
=1
(a>b>0)上一點(diǎn)P到兩焦點(diǎn)F1,F(xiàn)2的距離之和為6,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=6sin2x-2cos2x+8sinxcosx
(1)求函數(shù)f(x)的最大值;
(2)在三角形ABC中,角A、B、C的對邊分別為a、b、c,∠A為銳角,f(A)=6,且△ABC的面積為3,b+c=2+3
2
,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2-x)(x+4)>0的解集是
 

查看答案和解析>>

同步練習(xí)冊答案