(本小題滿分13分)

已知直線l:y=x+m,m∈R。

(I)若以點M(2,0)為圓心的圓與直線l相切與點P,且點P在y軸上,求該圓的方程;

(II)若直線l關于x軸對稱的直線為,問直線與拋物線C:x2=4y是否相切?說明理由。

本小題主要考查直線、圓、拋物線等基礎知識,考查運算求解能力,考查函數(shù)與方程思想、數(shù)形結合思想、化歸與轉化思想、分類與整合思想。滿分13分。

解法一:

(I)依題意,點P的坐標為(0,m)

因為,所以

解得m=2,即點P的坐標為(0,2)

從而圓的半徑

故所求圓的方程為

(II)因為直線的方程為

所以直線的方程為

(1)當時,直線與拋物線C相切

(2)當,那時,直線與拋物線C不相切。

綜上,當m=1時,直線與拋物線C相切;

時,直線與拋物線C不相切。

解法二:

(I)設所求圓的半徑為r,則圓的方程可設為

依題意,所求圓與直線相切于點P(0,m),

解得

所以所求圓的方程為

(II)同解法一。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015屆江西省高一第二次月考數(shù)學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題

(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:河南省09-10學年高二下學期期末數(shù)學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省高三5月月考調理科數(shù)學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項.

(1) 求函數(shù)的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項和

 

 

查看答案和解析>>

同步練習冊答案