【題目】給出下列不等式:①x≥ln(x+1)(x>﹣1)② >﹣ +2x﹣ (x>0)③ln >2(x+ )(x∈(0,1))其中成立的個數(shù)是(
A.0
B.1
C.2
D.3

【答案】B
【解析】解:對于①,x≥ln(x+1)(x>﹣1),構(gòu)造函數(shù):f(x)=x﹣ln(x+1)(x>﹣1).f′(x)=1﹣ = ,可得x∈(﹣1,0),函數(shù)f(x)遞減,x∈(0,+∞)遞增,故f(x)≥f(0)=0 ∴x≥ln(x+1)(x>﹣1)成立,故 成立.
對于②,取x=1, >﹣ +2x﹣ (x>0)不成立,故②不成立;
對于③,ln >2(x+ )(x∈(0,1)),構(gòu)造函數(shù)g(x)=ln ﹣2(x+ )(x∈(0,1)),
g′(x)= = 0,∴g(x)在(0,1)遞增,而g(0)=0,故x∈(0,1)時,g(x)>0恒成立,故 成立.
故選:B
【考點精析】認真審題,首先需要了解命題的真假判斷與應用(兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設 ,對任意x∈R,不等式a(cos2x﹣m)+πcosx≥0恒成立,則實數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐中,底面為菱形,且,是邊長為的正三角形,且平面平面,已知點的中點.

(Ⅰ)證明:平面

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)g(x)=ax3+2(1﹣a)x2﹣3ax在區(qū)間(﹣∞, )內(nèi)單調(diào)遞減,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表是某廠的產(chǎn)量x與成本y的一組數(shù)據(jù):

產(chǎn)量x(千件)

2

3

5

6

成本y(萬元)

7

8

9

12

(Ⅰ)根據(jù)表中數(shù)據(jù),求出回歸直線的方程 = x (其中 = , =
(Ⅱ)預計產(chǎn)量為8千件時的成本.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各式中S的值不可以用算法求解的是(
A.S=1+2+3+4
B.S=1+2+3+4+…
C.S=1+ + +…+
D.S=12+22+32+…+1002

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【選修4—4:坐標系與參數(shù)方程】

將圓上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>2倍,得曲線C.

Ⅰ)寫出C的參數(shù)方程;

設直線C的交點為,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段的中點且與垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了了解一年內(nèi)的用水情況,抽取了10天的用水量如表所示:

天數(shù)

1

1

1

2

2

1

2

用水量/噸

22

38

40

41

44

50

95

(Ⅰ)在這10天中,該公司用水量的平均數(shù)是多少?每天用水量的中位數(shù)是多少?
(Ⅱ)你認為應該用平均數(shù)和中位數(shù)中的哪一個數(shù)來描述該公司每天的用水量?

查看答案和解析>>

同步練習冊答案