【題目】元旦期間,某轎車銷售商為了促銷,給出了兩種優(yōu)惠方案,顧客只能選擇其中的一種,方案一:每滿萬元,可減千元;方案二:金額超過萬元(含萬元),可搖號三次,其規(guī)則是依次裝有個幸運(yùn)號、個吉祥號的一個搖號機(jī),裝有個幸運(yùn)號、個吉祥號的二號搖號機(jī),裝有個幸運(yùn)號、個吉祥號的三號搖號機(jī)各搖號一次,其優(yōu)惠情況為:若搖出個幸運(yùn)號則打折,若搖出個幸運(yùn)號則打折;若搖出個幸運(yùn)號則打折;若沒有搖出幸運(yùn)號則不打折.
(1)若某型號的車正好萬元,兩個顧客都選中第二中方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;
(2)若你評優(yōu)看中一款價格為萬的便型轎車,請用所學(xué)知識幫助你朋友分析一下應(yīng)選擇哪種付款方案.
【答案】(1)(2)選擇第二種方案根劃算
【解析】試題分析:(1)根據(jù)條件可得若選擇方案二優(yōu)惠,即至少有一次摸出的是幸運(yùn)球,其對立事件是三次都沒有摸出幸運(yùn)球,其概率為 ,那么兩個人至少有一個人選擇方案二優(yōu)惠的概率為;(2)選擇方案一的價格為 (萬元),選擇方案二,先列出付款金額的分布列,求的期望,然后再比較.
試題解析:(1)選擇方案二方案一更優(yōu)惠,則需要至少摸出一個幸運(yùn)球,設(shè)顧客不打折即三次沒摸出幸運(yùn)球為事件,則,故所求概率.
(2)若選擇方案一,則需付款(萬元).
若選擇方案二,設(shè)付款金額為萬元,則可能的取值為,
,
, ,
故的分布列為
6 | 7 | 8 | 10 | |
所以(萬元)(萬元),
所以選擇第二種方案根劃算.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀右面的程序框圖,運(yùn)行相應(yīng)的程序,若輸入N的值為24,則輸出N的值為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個三位自然數(shù)的百位,十位,個位上的數(shù)字依次為,當(dāng)且僅當(dāng)且時稱為“凹數(shù)”.若,且互不相同,任取一個三位數(shù),則它為“凹數(shù)”的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過原點(diǎn)的動直線l與圓相交于不同的兩點(diǎn)A,B.
(1)求線段AB的中點(diǎn)M的軌跡C的方程;
(2)是否存在實數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個交點(diǎn)?若存在,求出k的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次趣味校園運(yùn)動會的頒獎儀式上,高一、高二、高三代表隊人數(shù)分別為120人、120人、n人.為了活躍氣氛,大會組委會在頒獎過程中穿插抽獎活動,并用分層抽樣的方法從三個代表隊中共抽取20人在前排就座,其中高二代表隊有6人.
(1)求n的值;
(2)把在前排就座的高二代表隊6人分別記為a,b,c,d,e,f,現(xiàn)隨機(jī)從中抽取2人上臺抽獎.求a和b至少有一人上臺抽獎的概率;
(3)抽獎活動的規(guī)則是:代表通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機(jī)數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該代表中獎;若電腦顯示“謝謝”,則不中獎,求該代表中獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知0<a<b,且a+b=1,則下列不等式中正確的是( )
A.log2a>0
B.2a﹣b<
C.log2a+log2b<﹣2
D.2( + )<
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國慶假期是實施免收小型客車高速通行費(fèi)的重大節(jié)假日,有一個群名為“天狼星”的自駕游車隊,該車隊是由31輛身長約為(以計算)的同一車型組成,行程中經(jīng)過一個長為2725的隧道(通過隧道的車速不超過),勻速通過該隧道,設(shè)車隊的速度為,根據(jù)安全和車流的需要,當(dāng)時,相鄰兩車之間保持的距離;當(dāng)時,相鄰兩車之間保持的距離,自第一輛車車頭進(jìn)入隧道至第31輛車車尾離開隧道所用的時間.
(1)將表示成為的函數(shù);
(2)求該車隊通過隧道時間的最小值及此時車隊的速度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校某次N名學(xué)生的學(xué)科能力測評成績(滿分120分)的頻率分布直方圖如下,已知分?jǐn)?shù)在100﹣110的學(xué)生數(shù)有21人
(1)求總?cè)藬?shù)N和分?jǐn)?shù)在110﹣115分的人數(shù)n.;
(2)現(xiàn)準(zhǔn)備從分?jǐn)?shù)在110﹣115的n名學(xué)生(女生占 )中選3位分配給A老師進(jìn)行指導(dǎo),設(shè)隨機(jī)變量ξ表示選出的3位學(xué)生中女生的人數(shù),求ξ的分布列與數(shù)學(xué)期望Eξ;
(3)為了分析某個學(xué)生的學(xué)習(xí)狀態(tài),對其下一階段的學(xué)習(xí)提供指導(dǎo)建議,對他前7次考試的數(shù)學(xué)成績x、物理成績y進(jìn)行分析,該生7次考試成績?nèi)绫?
數(shù)學(xué)(x) | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理(y) | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
已知該生的物理成績y與數(shù)學(xué)成績x是線性相關(guān)的,求出y關(guān)于x的線性回歸方程 = x+ .若該生的數(shù)學(xué)成績達(dá)到130分,請你估計他的物理成績大約是多少?
附:對于一組數(shù)據(jù)(x1 , y1),(x2 , y2),…,(xn , yn),其回歸方程 = x+ 的斜率和截距的最小二乘估計分別為 = , .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com