在△ABC中,角A,B,C所對的邊分別為a,b,c,設(shè)函數(shù)f(x)=cosx•cos(x-A)-
1
2
cosA
(x∈R).
(Ⅰ)求函數(shù)f(x)的最小正周期和最大值;
(Ⅱ)若函數(shù)f(x)在x=
π
3
處取得最大值,求
a(cosB+cosC)
(b+c)sinA
的值.
(Ⅰ)依題意得f(x)=cos2xcosA+cosxsinxsinA-
1
2
cosA
…(2分)
=
1
2
(cos2x•cosA+sin2x•sinA)
=
1
2
cos(2x-A)
,…(5分)
所以T=π,(f(x))max=
1
2
.…(7分)
(Ⅱ)由( I)知:由
3
-A=2kπ,k∈Z
,得A=
3
-2kπ∈(0,π)

所以A=
3

a(cosB+cosC)
(b+c)sinA
=
cosB+cosC
sinB+sinC
=
cos(
π
3
-C)+cosC
sin(
π
3
-C)+sinC
=
3
2
cosC+
3
2
sinC
3
2
cosC+
1
2
sinC
=
3
.…(14分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊答案