【題目】(2017·紹興仿真考試)已知數(shù)列{an}的奇數(shù)項依次構(gòu)成公差為d1的等差數(shù)列,偶數(shù)項依次構(gòu)成公差為d2的等差數(shù)列(其中d1,d2為整數(shù)),且對任意n∈N*,都有an<an+1,若a1=1,a2=2,且數(shù)列{an}的前10項和S10=75,則d1=________,a8=________.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是某省從1月21日至2月24日的新冠肺炎每日新增確診病例變化曲線圖.
若該省從1月21日至2月24日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列,的前n項和為,則下列說法中正確的是( )
A.數(shù)列是遞增數(shù)列B.數(shù)列是遞增數(shù)列
C.數(shù)列的最大項是D.數(shù)列的最大項是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在以下命題中,不正確的個數(shù)為( )
①是,b共線的充要條件;②若∥,則存在唯一的實數(shù)λ,使=λ;③對空間任意一點O和不共線的三點A,B,C,若=2-2-,則P,A,B,C四點共面;④若{,,}為空間的一個基底,則{+,+,+}構(gòu)成空間的另一個基底;⑤ |(·)·|=||·||·||.
A. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖 所示,一條直角走廊寬為,
(1)若位于水平地面上的一根鐵棒在此直角走廊內(nèi),且,試求鐵棒的長;
(2)若一根鐵棒能水平地通過此直角走廊,求此鐵棒的最大長度;
(3)現(xiàn)有一輛轉(zhuǎn)動靈活的平板車,其平板面是矩形,它的寬為如圖2.平板車若想順利通過直角走廊,其長度不能超過多少米?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】探究函數(shù)的圖像時,列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
觀察表中y值隨x值的變化情況,完成以下的問題:
(1)函數(shù)的遞減區(qū)間是 ,遞增區(qū)間是 ;
(2)若對任意的恒成立,試求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(x+1)+ (a∈R).
(1)當a=1時,求函數(shù)f(x)在點(0,f(0))處的切線方程;
(2)討論函數(shù)f(x)的極值;
(3)求證:ln(n+1)> (n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,直線交橢圓于、兩點,橢圓的右頂點為,且滿足.
(1)求橢圓的方程;
(2)若直線與橢圓交于不同兩點、,且定點滿足,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的部分圖象大致是( )
A. B.
C. D.
【答案】D
【解析】當時, ,所以去掉A,B;
因為,所以,因此去掉C,選D.
點睛:有關(guān)函數(shù)圖象識別問題的常見題型及解題思路(1)由解析式確定函數(shù)圖象的判斷技巧:(1)由函數(shù)的定義域,判斷圖象左右的位置,由函數(shù)的值域,判斷圖象的上下位置;②由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;③由函數(shù)的奇偶性,判斷圖象的對稱性;④由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).(2)由實際情景探究函數(shù)圖象.關(guān)鍵是將問題轉(zhuǎn)化為熟悉的數(shù)學(xué)問題求解,要注意實際問題中的定義域問題.
【題型】單選題
【結(jié)束】
8
【題目】《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,則該“塹堵”的外接球的表面積為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com