已知E,F(xiàn)分別是正方體ABCD-A1B1C1D1的棱BC和CD的中點,求:
(1)A1D與EF所成角的大;
(2)A1F與平面B1EB所成角;
(3)二面角C-D1B1-B的大。
(1)因此與EF所成角的大小為
(2)
(3)二面角約為
(1)因為所以

可知向量的夾角為
因此與EF所成角的大小為
(2)在正方體中,因為平面,所以是平面的法向量    
因為

所以 ,由,所以可得向量之間的夾角約為
(3)因為平面,所以是平面的法向量,因為

所以,所以可得兩向量的夾角為
根據(jù)二面角夾角相等或互補可知,二面角約為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)如圖,四邊形ABCD為矩形,BC⊥平面ABE,FCE上的點,
BF⊥平面ACE.
(1)求證:AEBE
(2)設點M為線段AB的中點,點N為線段CE的中點.
求證:MN∥平面DAE

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,四棱錐P-ABCD是底面邊長為1的正方形,PD⊥BC,PD=1,PC=.
(Ⅰ)求證:PD⊥面ABCD;
(Ⅱ)求二面角A-PB-D的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)如圖,在四棱錐中,底面ABCD是正方形,側棱底面ABCD,EPC的中點.
(1)證明 平面
(2)求EB與底面ABCD所成的角的正切值.


 
 

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題8分)如圖,在四棱錐中,為正三角形,, 中點
(1)求證:;(2)求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分),
如圖,菱形ABCD所在平面與矩形ACEF所在平面互相垂直,已知BD=AF,且點M是線段EF的中點.
(1)求證:AM∥平面BDE;
(2)求平面DEF與平面BEF所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正三棱錐P—ABC中,D、E分別為PA、AC的中點,則△BDE不可能是 (   )
A.等腰三角形     B.等邊三角形     C.直角三角形     D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,矩形中,,沿對角線折起到的位置,且在平面內(nèi)的射影落在邊上,則二面角的平面角的正弦值為(              )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知m、n是兩條不重合的直線,α、β、γ是三個兩兩不重合的平面,則下列四個命題中真命題是                         (   )
A.若B.若
C.若D.若

查看答案和解析>>

同步練習冊答案