橢圓有一個焦點為F1(-2,0),且經(jīng)過點(0,2),求此橢圓的標(biāo)準(zhǔn)方程.
依題意,可知橢圓的焦點在x軸上,設(shè)其方程為
x2
a2
+
y2
b2
=1(a>b>0)
…(2分)
則由焦點為F1(-2,0),且經(jīng)過點(0,2)可得:
a2-b2=4
0
a2
+
22
b2
=1
…(8分).
解得
a2=8
b2=4
…(10分).
所以所求橢圓的標(biāo)準(zhǔn)方程為
x2
8
+
y2
4
=1
…(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知均在橢圓上,直線、分別過橢圓的左右焦點、,當(dāng)時,有.
(I)求橢圓的方程;
(II)設(shè)P是橢圓上的任一點,為圓的任一條直徑,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

【文科】已知F1(0,-3)、F2(0,3),動點P滿足|PF1|+|PF2|=a+
9
a
(a>0),則點P的軌跡為(  )
A.橢圓B.線段C.橢圓或線段D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
經(jīng)過點(0,1),離心率e=
3
2

(l)求橢圓C的方程;
(2)設(shè)直線x=my+1與橢圓C交于A,B兩點,點A關(guān)于x軸的對稱點為A′(A′與B不重合),則直線A′B與x軸是否交于一個定點?若是,請寫出定點坐標(biāo),并證明你的結(jié)論;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在直角坐標(biāo)系xoy中,“方程
x2
m2
+
y2
n2
=1
表示橢圓”是“m>n>0”的( 。
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分條件又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點A(-
3
,0)
,B是圓C:(x-
3
)2+y2=16
(C為圓心)上的動點,AB的垂直平分線與BC交于點E.
(1)求動點E的軌跡方程;
(2)設(shè)直線l:y=kx+m(k≠0,m>0)與E的軌跡交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:△OPQ面積的最大值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的對稱中心為原點O,焦點在x軸上,離心率為
1
2
,且點(1,
3
2
)在該橢圓上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過橢圓C的左焦點F1的直線l與橢圓C相交于A,B兩點,若△AOB的面積為
6
2
7
,求圓心在原點O且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若方程
x2
25-k
+
y2
k-9
=1表示橢圓,則k的取值范圍是(  )
A.(9,17)B.(9,25)C.(9,17)∪(17,25)D.(-∞,9)∪(25,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
2
+y2=1
的左右焦點分別為F1,F(xiàn)2,若過點P(0,-2)及F1的直線交橢圓于A,B兩點,求△ABF2的面積.

查看答案和解析>>

同步練習(xí)冊答案