(本小題滿分14分)設(shè)函數(shù),.
(Ⅰ)當(dāng)時,上恒成立,求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時,若函數(shù)上恰有兩個不同零點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅲ)是否存在實(shí)數(shù),使函數(shù)和函數(shù)在公共定義域上具有相同的單調(diào)性?若存在,求出的值,若不存在,說明理由.

解:(Ⅰ)由a=0,f(x)≥h(x)可得-mlnx≥-x 即 ┉┉┉┉┉┉┉┉1分
,則f(x)≥h(x)在(1,+∞)上恒成立等價于.
求得 ┉┉┉┉┉┉┉┉2分
當(dāng)時;;當(dāng)時, ┉┉┉┉┉┉┉┉3分
在x=e處取得極小值,也是最小值,
,故. ┉┉┉┉┉┉┉┉4分
(Ⅱ)函數(shù)k(x)=f(x)-h(x)在[1,3]上恰有兩個不同的零點(diǎn)等價于方程x-2lnx=a,在[1,3]上恰有兩個相異實(shí)根。┉┉┉┉┉┉┉┉5分
令g(x)=x-2lnx,則 ┉┉┉┉┉┉┉┉6分
當(dāng)時,,當(dāng)時,
g(x)在[1,2]上是單調(diào)遞減函數(shù),在上是單調(diào)遞增函數(shù)。
 ┉┉┉┉┉┉┉┉8分
又g(1)=1,g(3)=3-2ln3
∵g(1)>g(3),∴只需g(2)<a≤g(3),
故a的取值范圍是(2-2ln2,3-2ln3) ┉┉┉┉┉┉┉┉9分
(Ⅲ)存在m=,使得函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性
,函數(shù)f(x)的定義域?yàn)椋?,+∞)。┉┉┉┉┉┉10分
,則,函數(shù)f(x)在(0,+∞)上單調(diào)遞增,不合題意;┉┉┉11分
,由可得2x2-m>0,解得x>或x<-(舍去)
時,函數(shù)的單調(diào)遞增區(qū)間為(,+∞)
單調(diào)遞減區(qū)間為(0, ) ┉┉┉┉┉┉┉┉12分
而h(x)在(0,+∞)上的單調(diào)遞減區(qū)間是(0,),單調(diào)遞增區(qū)間是(,+∞)
故只需=,解之得m= ┉┉┉┉┉┉┉┉13分
即當(dāng)m=時,函數(shù)f(x)和函數(shù)h(x)在其公共定義域上具有相同的單調(diào)性。┉14分.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)設(shè),若對任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
已知.
(I)求函數(shù)上的最小值;
(II)對一切恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)
(1)求的單調(diào)區(qū)間和最小值;
(2)討論的大小關(guān)系;
(3)求的取值范圍,使得對任意>0成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
函數(shù),其中為常數(shù).
(1)證明:對任意,的圖象恒過定點(diǎn);
(2)當(dāng)時,判斷函數(shù)是否存在極值?若存在,求出極值;若不存在,說明理由;
(3)若對任意時,恒為定義域上的增函數(shù),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)函數(shù)
(Ⅰ)若,處的切線相互垂直,求這兩個切線方程;
(Ⅱ)若單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)若直線過點(diǎn),且與曲線都相切,
求實(shí)數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù).
(Ⅰ)設(shè),討論的單調(diào)性;
(Ⅱ)若對任意恒有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知x = 1是的一個極值點(diǎn)
(I)求b的值;
(II)求函數(shù)f(x)的單調(diào)減區(qū)間;
(III)設(shè),試問過點(diǎn)(2,5)可作多少條直線與曲線相切?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案