如圖,四棱錐PABCD中,PA⊥底面ABCD,PA=2,BC="CD=2," ∠ACB=∠ACD=.
(1)求證:BD⊥平面PAC;
(2)若側(cè)棱PC上的點(diǎn)F滿足PF=7FC,求三棱錐PBDF的體積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知正方形的邊長為,點(diǎn)分別在邊上,,現(xiàn)將△沿線段折起到△位置,使得.
(1)求五棱錐的體積;
(2)在線段上是否存在一點(diǎn),使得平面?若存在,求;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P-ABCD的底面是矩形,側(cè)面PAD丄底面ABCD,..
(1)求證:平面PAB丄平面PCD
(2)如果AB=BC=2,PB=PC=求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
四面體的六條棱中,有五條棱長都等于a.
(1)求該四面體的體積的最大值;
(2)當(dāng)四面體的體積最大時(shí),求其表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知多面體中, 四邊形為矩形,,,平面平面, 、分別為、的中點(diǎn),且,.
(1)求證:平面;
(2)求證:平面;
(3)設(shè)平面將幾何體分成的兩個(gè)錐體的體積分別為,,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4,BD=4,AB=2CD=8.
(1)設(shè)M是PC上的一點(diǎn),證明:平面MBD⊥平面PAD;
(2)當(dāng)M點(diǎn)位于線段PC什么位置時(shí),PA∥平面MBD?
(3)求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在體積為的圓錐中,已知的直徑,是的中點(diǎn),是弦的中點(diǎn).
(1)指出二面角的平面角,并求出它的大;
(2)求異面直線與所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,儲油灌的表面積為定值,它的上部是半球,下部是圓柱,半球的半徑等于圓柱底面半徑.
⑴試用半徑表示出儲油灌的容積,并寫出的范圍.
⑵當(dāng)圓柱高與半徑的比為多少時(shí),儲油灌的容積最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com