在中,角所對的邊為,且滿足
(1)求角的值;
(2)若且,求的取值范圍.
(1);(2).
解析試題分析:本題考查解三角形中的正弦定理、二倍角公式、二角和與差的正余弦公式及求三角函數(shù)最值等基礎(chǔ)知識,考查基本運(yùn)算能力.第一問,先用倍角公式和兩角和與差的余弦公式將表達(dá)式變形,解方程,在三角形內(nèi)求角;第二問,利用正弦定理得到邊和角的關(guān)系代入到所求的式子中,利用兩角和與差的正弦公式展開化簡表達(dá)式,通過得到角的范圍,代入到表達(dá)式中求值域.
試題解析:(1)由已知得
, 4分
化簡得,故. 6分
(2)由正弦定理,得,
故
8分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/dc/0/tqd0y1.png" style="vertical-align:middle;" />,所以,, 10分
所以. 12分
考點(diǎn):1.倍角公式;2.兩角和與差的余弦公式;3.正弦公式;4.求三角函數(shù)的值域.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,角A,B,C所對的邊分別為,已知函數(shù) R).
(Ⅰ)求函數(shù)的最小正周期和最大值;
(Ⅱ)若函數(shù)在處取得最大值,且,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖象的一部分如圖所示.
(1)求函數(shù)的解析式;
(2)當(dāng)時,求函數(shù)的最大值與最小值及相應(yīng)的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,,三點(diǎn).
(1)求向量和向量的坐標(biāo);
(2)設(shè),求的最小正周期;
(3)求的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的最小正周期為.
(I)求值及的單調(diào)遞增區(qū)間;
(II)在△中,分別是三個內(nèi)角所對邊,若,,,求的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)的最大值為3,其圖像相鄰兩條對稱軸之間的距離為.
(1)求函數(shù)f(x)的解析式;
(2)設(shè),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com