設(shè)(a,b為實常數(shù)).
(1)當(dāng)a=b=1時,證明:f(x)不是奇函數(shù);
(2)設(shè)f(x)是實數(shù)集上的奇函數(shù),求a與b的值;
(3)(理) 當(dāng)f(x)是實數(shù)集上的奇函數(shù)時,證明對任何實數(shù)x、c都有f(x)<c2-3c+3成立.
(4)(文)求(2)中函數(shù)f(x)的值域.
【答案】分析:(1)證明不是奇函數(shù),可用特殊值法;如證明:f(-1)≠-f(1),f(x)不是奇函數(shù);
(2)利用奇函數(shù)定義f(-x)=-f(x),再用待定系數(shù)法求解;
(3)即證明c2-3c+3大于f(x)的最大值,所以先求f(x)的最大值.
(4)先將原函數(shù)式化成:,將2x看成整體,利用其范圍結(jié)合不等式的性質(zhì)即可求得函數(shù)f(x)的值域.
解答:解:(1),,
所以f(-1)≠-f(1),f(x)不是奇函數(shù);                       (4分)
(2)f(x)是奇函數(shù)時,f(-x)=-f(x),即對任意實數(shù)x成立.      (6分)
化簡整理得(2a-b)•22x+(2ab-4)•2x+(2a-b)=0,這是關(guān)于x的恒等式,
所以,所以(舍)或.           (10分)
(3)(理),
因為2x>0,所以2x+1>1,,從而;                 (14分)
對任何實數(shù)c成立;              (16分)
所以對任何實數(shù)x、c都有f(x)<c2-3c+3成立.               (18分)
(4)(文) ,因為2x>0,(12分)
所以2x+1>1,,(14分)
從而;所以函數(shù)f(x)的值域為.        (18分)
點評:本小題主要考查函數(shù)單調(diào)性的應(yīng)用、函數(shù)奇偶性的應(yīng)用、不等式的解法等基礎(chǔ)知識,考查運(yùn)算求解能力,考查轉(zhuǎn)化思想;屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)學(xué)公式(a,b為實常數(shù)).
(1)當(dāng)a=b=1時,證明:f(x)不是奇函數(shù);
(2)設(shè)f(x)是奇函數(shù),求a與b的值;
(3)求(2)中函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)學(xué)公式(a,b為實常數(shù)).
(1)當(dāng)a=b=1時,證明:f(x)不是奇函數(shù);
(2)設(shè)f(x)是實數(shù)集上的奇函數(shù),求a與b的值;
(3)(理) 當(dāng)f(x)是實數(shù)集上的奇函數(shù)時,證明對任何實數(shù)x、c都有f(x)<c2-3c+3成立.
(4)(文)求(2)中函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年吉林省延邊州汪清六中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)(a,b為實常數(shù)).
(1)當(dāng)a=b=1時,證明:f(x)不是奇函數(shù);
(2)設(shè)f(x)是奇函數(shù),求a與b的值;
(3)求(2)中函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年新課標(biāo)高三(上)數(shù)學(xué)一輪復(fù)習(xí)單元驗收2(文科)(解析版) 題型:解答題

設(shè)(a,b為實常數(shù)).
(1)當(dāng)a=b=1時,證明:f(x)不是奇函數(shù);
(2)設(shè)f(x)是奇函數(shù),求a與b的值;
(3)求(2)中函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案