精英家教網(wǎng)已知點(diǎn)M(-2,0),⊙O:x2+y2=1(如圖);若過點(diǎn)M的直線l1交圓于P、Q兩點(diǎn),且圓孤PQ恰為圓周的
14
,求直線l1的方程.
分析:通過圓孤PQ恰為圓周的
1
4
,求出∠POQ,再求出O點(diǎn)到直線l1的距離,設(shè)出直線l1的方程,利用點(diǎn)到直線的距離公式,求出變量,即可得到所求直線l1的方程.
解答:解:∵PQ為圓周的
1
4
,∴∠POQ=
π
2
.

∴O點(diǎn)到直線l1的距離為
2
2
.

設(shè)l1的方程為y=k(x+2),∴
|2k|
k2+1
=
2
2
,∴k2=
1
7
.

∴l(xiāng)1的方程為y=±
7
7
(x+2).
點(diǎn)評:本題是基礎(chǔ)題,考查點(diǎn)到直線的距離的應(yīng)用,待定系數(shù)法的解題思想,?碱},一般情況下是選擇題或填空題的形式出現(xiàn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(-2,0),N(2,0),動點(diǎn)P滿足條件||PM|-|PN||=2
2
,記動點(diǎn)P的軌跡為W.
(1)求W的方程;
(2)過N(2,0)作直線l交曲線W于A,B兩點(diǎn),使得|AB|=2
2
,求直線l的方程.
(3)若從動點(diǎn)P向圓C:x2+(y-4)2=1作兩條切線,切點(diǎn)為A、B,令|PC|=d,試用d來表示
PA
PB
,若
PA
PB
=
36
5
,求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(-2,0),N(2,0),動點(diǎn)P滿足條件|PM|-|PN|=2
2
.記動點(diǎn)P的軌跡為W.若A,B是W上的不同兩點(diǎn),O是坐標(biāo)原點(diǎn).
(1)求W的方程;
(2)若AB的斜率為2,求證
OA
OB
為定值.
(3)求
OA
OB
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(-2,0),N(2,0),動點(diǎn)P滿足條件|PM|-|PN|=2
2
.記動點(diǎn)P的軌跡為W.
(1)求W的方程;
(2)若A,B是W上的不同兩點(diǎn),O是坐標(biāo)原點(diǎn),求
OA
OB
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•湖北模擬)已知點(diǎn)M(-2,0)、N(2,0),動點(diǎn)P滿足條件|PM|-|PN|=2
2
,則動點(diǎn)P的軌跡方程為(  )

查看答案和解析>>

同步練習(xí)冊答案