對于函數(shù)若存在,使得成立,則稱為的不動點.
已知
(1)當時,求函數(shù)的不動點;
(2)若對任意實數(shù),函數(shù)恒有兩個相異的不動點,求的取值范圍;
(3)在(2)的條件下,若圖象上、兩點的橫坐標是函數(shù)的不動點,且、兩點關(guān)于直線對稱,求的最小值.
(1)-1和3;(2);(3).
【解析】
試題分析:(1)根據(jù)不動點的定義,本題實質(zhì)是求方程即的解;(2)函數(shù)恒有兩個相異的不動點即方程恒有兩個不等實根,對應(yīng)的判別式恒成立;(3)、兩點關(guān)于直線對稱,可用的結(jié)論有:①直線AB與直線垂直,即斜率互為負倒數(shù);②線段AB的中點在直線上.注意不動點A、B所在直線AB的斜率為1.
試題解析: (1)時,,
函數(shù)的不動點為-1和3;
(2)即有兩個不等實根,轉(zhuǎn)化為有兩個不等實根,需有判別式大于0恒成立
即,
的取值范圍為;
(3)設(shè),則,
的中點的坐標為,即
兩點關(guān)于直線對稱,
又因為在直線上, ,
的中點在直線上,
利用基本不等式可得當且僅當時,b的最小值為.
考點:(1)解方程;(2)二次方程有兩個不等實根的條件;(3)直線的對稱點問題及最小值問題.
科目:高中數(shù)學(xué) 來源:2015屆云南省高二上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
對于函數(shù)若存在,使得成立,則稱為的不動點.
已知
(1)當時,求函數(shù)的不動點;
(2)若對任意實數(shù),函數(shù)恒有兩個相異的不動點,求的取值范圍;
(3)在(2)的條件下,若圖象上、兩點的橫坐標是函數(shù)的不動點,且、兩點關(guān)于直線對稱,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆廣東省廣州市海珠區(qū)高三入學(xué)摸底考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)若在處取得極值,求的值;
(2)求的單調(diào)區(qū)間;
(3)若且,函數(shù),若對于,總存在使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆河南鄭州盛同學(xué)校高二下學(xué)期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)。
(1)若在處取得極值,求的值;
(2)求的單調(diào)區(qū)間;
(3)若且,函數(shù),若對于,總存在使得,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南京市、鹽城市高三第一次模擬考試數(shù)學(xué)(解析版) 題型:解答題
(本小題滿分16分)
對于函數(shù),若存在實數(shù)對(),使得等式對定義域中的每
一個都成立,則稱函數(shù)是“()型函數(shù)”.
(1)判斷函數(shù)是否為“()型函數(shù)”,并說明理由;
(2)已知函數(shù)是“(1,4)型函數(shù)”, 當時,都有成立,且當
時,,若,試求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com