【題目】已知函數(shù).
(1)求證:對任意實(shí)數(shù),都有;
(2)若,是否存在整數(shù),使得在上,恒有成立?若存在,請求出的最大值;若不存在,請說明理由.()
【答案】(1)見證明;(2)見解析
【解析】
(1)利用導(dǎo)數(shù)求得 ,令,再利用導(dǎo)數(shù)即可求得,問題得證。
(2)整理得:,令:,由得,對是否大于分類, 當(dāng)時(shí),即時(shí),利用導(dǎo)數(shù)即可證得,當(dāng)時(shí),利用導(dǎo)數(shù)即可求得,要使不等式恒成立轉(zhuǎn)化成成立,令,利用導(dǎo)數(shù)即可求得,,即可求得,問題得解。
解:(1)證明:由已知易得,所以
令得:
顯然,時(shí),<0,函數(shù)f(x)單調(diào)遞減;
時(shí),>0,函數(shù)f(x)單調(diào)遞增
所以
令,則由得
時(shí),>0,函數(shù)t()單調(diào)遞增;
時(shí),<0,函數(shù)t()單調(diào)遞減
所以,即結(jié)論成立.
(2)由題設(shè)化簡可得
令,所以
由=0得
①若,即時(shí),在上,有,故函數(shù)單調(diào)遞增
所以
②若,即時(shí),
在上,有,故函數(shù)在上單調(diào)遞減
在上,有.故函數(shù)在上單調(diào)遞增
所以,在上,
故欲使,只需即可
令
由得
所以,時(shí),,即單調(diào)遞減
又
故
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ln(a x)+bx在點(diǎn)(1,f(1))處的切線是y=0;
(I)求函數(shù)f(x)的極值;
(II)當(dāng)恒成立時(shí),求實(shí)數(shù)m的取值范圍(e為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為為橢圓上一動(dòng)點(diǎn),當(dāng)的面積最大時(shí),其內(nèi)切圓半徑為,設(shè)過點(diǎn)的直線被橢圓截得線段,
當(dāng)軸時(shí),.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)為橢圓的左頂點(diǎn),是橢圓上異于左、右頂點(diǎn)的兩點(diǎn),設(shè)直線的斜率分別為,若,試問直線是否過定點(diǎn)?若過定點(diǎn),求該定點(diǎn)的坐標(biāo);若不過定點(diǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓長軸的一個(gè)端點(diǎn)是拋物線的焦點(diǎn),且橢圓焦點(diǎn)與拋物線焦點(diǎn)的距離是1。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓的左右端點(diǎn),為原點(diǎn),是橢圓上異于的任意一點(diǎn),直線分別交軸于,問是否為定值,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,,,,,點(diǎn)為的中點(diǎn).
(1)求證:平面;
(2)求平面與平面所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一容積為的正方體容器,在棱、和面對角線的中點(diǎn)各有一小孔、、,若此容器可以任意放置,則其可裝水的最大容積是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知美國蘋果公司生產(chǎn)某款iphone手機(jī)的年固定成本為40萬美元,每生產(chǎn)1萬部還需要另外投入16美元,設(shè)蘋果公司一年內(nèi)共生產(chǎn)該款iphone手機(jī)萬部并全部銷售完,每萬部的銷售收入為萬元,且.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬部)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬部時(shí),蘋果公司在該款手機(jī)的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的定義域恰是不等式的解集,其值域?yàn)?/span>,函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>.
(1)求定義域和值域;
(2)試用單調(diào)性的定義法解決問題:若存在實(shí)數(shù),使得函數(shù)在上單調(diào)遞減,上單調(diào)遞增,求實(shí)數(shù)的取值范圍并用表示;
(3)是否存在實(shí)數(shù),使成立?若存在,求實(shí)數(shù)的取值范圍,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com