【題目】在直角坐標系中,長為3的線段的兩端點分別在軸、軸上滑動,點為線段上的點,且滿足.記點的軌跡為曲線.

1)求曲線的方程;

2)若點為曲線上的兩個動點,記,判斷是否存在常數(shù)使得點到直線的距離為定值?若存在,求出常數(shù)的值和這個定值;若不存在,請說明理由.

【答案】12)存在;常數(shù),定值

【解析】

1)設出的坐標,利用以及,求得曲線的方程.

2)當直線的斜率存在時,設出直線的方程,求得到直線的距離.聯(lián)立直線的方程和曲線的方程,寫出根與系數(shù)關系,結(jié)合以及為定值,求得的值.當直線的斜率不存在時,驗證.由此得到存在常數(shù),且定值.

1)解析:(1)設,,

由題可得

,解得

,即,

消去得:

2)當直線的斜率存在時,設直線的方程為

,

可得:

由點的距離為定值可得為常數(shù))即

得:

為定值時,,此時,且符合

當直線的斜率不存在時,設直線方程為

由題可得,時,,經(jīng)檢驗,符合條件

綜上可知,存在常數(shù),且定值

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】三棱錐P ABC中,PA⊥平面ABC,Q是BC邊上的一個動點,且直線PQ與面ABC所成角的最大值為則該三棱錐外接球的表面積為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出停課不停學的口號,鼓勵學生線上學習.某校數(shù)學教師為了調(diào)查高三學生數(shù)學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數(shù)學時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:

分數(shù)不少于120

分數(shù)不足120

合計

線上學習時間不少于5小時

4

19

線上學習時間不足5小時

合計

45

1)請完成上面列聯(lián)表;并判斷是否有99%的把握認為高三學生的數(shù)學成績與學生線上學習時間有關;

2)在上述樣本中從分數(shù)不少于120分的學生中,按照分層抽樣的方法,抽到線上學習時間不少于5小時和線上學習時間不足5小時的學生共5名,若在這5名學生中隨機抽取2人,求至少1人每周線上學習時間不足5小時的概率.

(下面的臨界值表供參考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式 其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為自然對數(shù)的底數(shù)).

1)討論函數(shù)在定義域內(nèi)極值點的個數(shù);

2)設直線為函數(shù)的圖象上一點處的切線,證明:在區(qū)間上存在唯一的,使得直線與曲線相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知六面體如圖所示,平面,,,,,是棱上的點,且滿足.

1)求證:直線平面;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】港珠澳大橋是中國境內(nèi)一座連接中國香港、廣東珠海和中國澳門的橋隧工程,因其超大的建筑規(guī)模、空前的施工難度以及頂尖的建造技術聞名世界,為內(nèi)地前往香港的游客提供了便捷的交通途徑,某旅行社分年齡統(tǒng)計了大橋落地以后,由香港大橋?qū)崿F(xiàn)內(nèi)地前往香港的老中青旅客的比例分別為,現(xiàn)使用分層抽樣的方法從這些旅客中隨機抽取名,若青年旅客抽到60人,則(

A.老年旅客抽到150B.中年旅客抽到20

C.D.被抽到的老年旅客以及中年旅客人數(shù)之和超過200

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知P,A,B,C是半徑為2的球面上的點,PA=PB=PC=2,,點BAC上的射影為D,則三棱錐體積的最大值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若關于x的方程有唯一的實數(shù)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐中,側(cè)面底面,,是邊長為2的正三角形底面是菱形,點的中點

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案