【題目】已知函數(shù),

)求曲線處的切線方程.

)求的單調(diào)區(qū)間.

)設(shè),其中,證明:函數(shù)僅有一個(gè)零點(diǎn).

【答案】)單調(diào)增區(qū)間為單調(diào)減區(qū)間為)見(jiàn)解析

【解析】試題分析:(Ⅰ)求導(dǎo),所以,又可得處的切線方程(Ⅱ)令,解出,令,解出,可得的單調(diào)區(qū)間.(Ⅲ)

單調(diào)遞增在單調(diào)遞減,在單調(diào)遞增,且極大值, 極小值可得無(wú)零點(diǎn),

有一個(gè)零點(diǎn),所以有且僅有一個(gè)零點(diǎn).

試題解析:

,

,

處切線為,即為

)令,解出

,解出

的單調(diào)增區(qū)間為

單調(diào)減區(qū)間為

,

,解出,

,解出

單調(diào)遞增在單調(diào)遞減,

單調(diào)遞增.

極大值,

極小值,

時(shí), 極大值小于零,

時(shí), 極小值小于零.

, 單調(diào)遞增,

說(shuō)明無(wú)零點(diǎn),

有一個(gè)零點(diǎn),

有且僅有一個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱臺(tái)中, 側(cè)面與側(cè)面是全等的梯形,若,且.

(Ⅰ)若, ,證明: ∥平面;

(Ⅱ)若二面角,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知為橢圓 的右焦點(diǎn), , 為橢圓的下、上、右三個(gè)頂點(diǎn), 的面積之比為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)試探究在橢圓上是否存在不同于點(diǎn), 的一點(diǎn)滿足下列條件:點(diǎn)軸上的投影為, 的中點(diǎn)為,直線交直線于點(diǎn), 的中點(diǎn)為,且的面積為.若不存在,請(qǐng)說(shuō)明理由;若存在,求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中,,,的中點(diǎn),是等腰三角形,的中點(diǎn),上一點(diǎn).

I)若平面,求

II)平面將三棱柱分成兩個(gè)部分,求較小部分與較大部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是由正整數(shù)組成的無(wú)窮數(shù)列,該數(shù)列前項(xiàng)的最大值記為,第項(xiàng)之后各項(xiàng), , 的最小值記為,

I)若 , , , , ,是一個(gè)周期為的數(shù)列(即對(duì)任意, ),寫(xiě)出, , , 的值.

II)設(shè)是正整數(shù),證明: 的充分必要條件為是公比為的等比數(shù)列.

III)證明:若, ,則的項(xiàng)只能是或者,且有無(wú)窮多項(xiàng)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)),將的圖象向左平移個(gè)單位長(zhǎng)度后得到的圖象,且在區(qū)間內(nèi)的最大值為.

(1)求實(shí)數(shù)的值;

(2)在中,內(nèi)角, , 的對(duì)邊分別是 , ,若,且,求的周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知95個(gè)數(shù)a1a2,a3,…,a95a1a2+a1a3+…+a94a95的最小正值是______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為實(shí)數(shù)).

)若,求函數(shù)處的切線方程.

)求函數(shù)的單調(diào)區(qū)間.

)若存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)、是平面上左、右兩個(gè)不同的定點(diǎn), ,動(dòng)點(diǎn)滿足:

(1)求證:動(dòng)點(diǎn)的軌跡為橢圓;

(2)拋物線滿足:頂點(diǎn)在橢圓的中心;焦點(diǎn)與橢圓的右焦點(diǎn)重合

設(shè)拋物線與橢圓的一個(gè)交點(diǎn)為問(wèn):是否存在正實(shí)數(shù),使得的邊長(zhǎng)為連續(xù)自然數(shù)若存在,求出的值;若不存在,說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案