【題目】某花店每天以每枝5元的價格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝10元的價格出售.如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻 數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
(1)若花店一天購進(jìn)17枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式;
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
①假設(shè)花店在這100天內(nèi)每天購進(jìn)17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);
②若花店一天購進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于75元的概率.
【答案】(1) y=(n∈N);(2)①76.4;②0.7.
【解析】試題分析:(Ⅰ)由題意,分析變量間的等量關(guān)系,能建立當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(Ⅱ)①由已知條件利用100天玫瑰花的日需求量(單位:枝),整理得表格,能求出這100天的日利潤(單位:元)的平均數(shù).
②利潤不少于75元,當(dāng)且僅當(dāng)日需求量不少于16枝,由此能求出當(dāng)天的利潤不少于75元的概率.
試題解析:
(1)當(dāng)日需求量n≥17時,利潤y=85.
當(dāng)日需求量n<17時,利潤y=10n-85.
所以y關(guān)于n的函數(shù)解析式為
y=(n∈N).
(2)①這100天中有10天的日利潤為55元,20天的日利潤為65元,16天的日利潤為75元,54天的日利潤為85元,所以這100天的日利潤的平均數(shù)為×(55×10+65×20+75×16+85×54)=76.4.
②利潤不低于75元當(dāng)且僅當(dāng)日需求量不少于16枝.故當(dāng)天的利潤不少于75元的概率為P=0.16+0.16+0.15+0.13+0.1=0.7.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬,現(xiàn)從雙方的馬匹中隨機(jī)選一匹進(jìn)行一場比賽,則田忌馬獲勝的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù),滿足.
()求函數(shù)的解析式.
()若函數(shù),,是否存在實數(shù)使得的最小值為?
若存在,求出的值;若不存在,說明理由.
()若函數(shù),是否存在實數(shù),,使函數(shù)在上的值域為?若存在,求出實數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,且(1﹣2x)n=a0+a1x+a2x2+a3x3+…+anxn .
(Ⅰ)求n的值;
(Ⅱ)求a1+a2+a3+…+an的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計,隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖.
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)估計這次學(xué)生參加社區(qū)服務(wù)人數(shù)的眾數(shù)、中位數(shù)以及平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在每年的春節(jié)后,某市政府都會發(fā)動公務(wù)員參與到植樹綠化活動中去.林業(yè)管理部門在植樹前,為了保證樹苗的質(zhì)量,都會在植樹前對樹苗進(jìn)行檢測.現(xiàn)從甲、乙兩種樹苗中各抽測了10株樹苗,量出它們的高度如下(單位:厘米):
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)畫出兩組數(shù)據(jù)的莖葉圖,并根據(jù)莖葉圖對甲、乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結(jié)論;
(2)設(shè)抽測的10株甲種樹苗高度平均值為,將這10株樹苗的高度依次輸入,按程序框(如圖)進(jìn)行運算,問輸出的S大小為多少?并說明S的統(tǒng)計學(xué)意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣0.5x+1,則不等式f(2x﹣3)<0.5的解集為( )
A.{x|﹣1<x<1.5}
B.{x|0.5<x<2}
C.{x|x<2}
D.{x|1.5<x<2}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為保障高考的公平性,高考時每個考點都要安裝手機(jī)屏蔽儀,要求在考點周圍1 km內(nèi)不能收到手機(jī)信號.檢查員抽查青島市一考點,在考點正西約 km有一條北偏東60°方向的公路,在此處檢查員用手機(jī)接通電話,以12 km/h的速度沿公路行駛,最長需要多少時間,檢查員開始收不到信號,并至少持續(xù)多長時間該考點才算合格?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com