已知等比數(shù)列{an }的首項(xiàng)為
1
15
,前4項(xiàng)的和是1,則數(shù)列的公比為( 。
分析:根據(jù)題意可知公比q≠1,然后根據(jù)等比數(shù)列求和公式建立關(guān)于q的方程,解之即可.
解答:解:根據(jù)等比數(shù)列{an }的首項(xiàng)為
1
15
,前4項(xiàng)的和是1,可知公比q≠1
則1=
1
15
(1-q4)
1-q
,解得q=2
故選B.
點(diǎn)評:本題主要考查了等比數(shù)列的前n項(xiàng)公式,同時(shí)考查了運(yùn)算求出的能力和分類討論的思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a2=9,a5=243.
(1)求{an}的通項(xiàng)公式;
(2)令bn=log3an,求數(shù)列{
1bnbn+1
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}滿足a1•a7=3a3a4,則數(shù)列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數(shù)列的第5項(xiàng),第3項(xiàng),第2項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an,求數(shù)列{|bn|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習(xí)冊答案