【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)設(shè),計(jì)算的導(dǎo)數(shù).
【答案】(1).(2).
【解析】試題分析:(1)由導(dǎo)數(shù)的基本定義就出斜率,根據(jù)點(diǎn)斜式寫(xiě)出切線方程;(2), .
試題解析:
(1),則,
又,∴所求切線方程為,即.
(2), .
【題型】解答題
【結(jié)束】
18
【題目】對(duì)某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:
(1)求出表中及圖中的值;
(2)若該校高一學(xué)生有800人,試估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間內(nèi)的人數(shù).
【答案】(1), , ;(2)人.
【解析】試題分析:(1)由題意, 內(nèi)的頻數(shù)是10,頻率是0.25知, ,所以,則, .(2)高一學(xué)生有800人,分組內(nèi)的頻率是,人數(shù)為人.
試題解析:
(1)由內(nèi)的頻數(shù)是10,頻率是0.25知, ,所以.
因?yàn)轭l數(shù)之和為40,所以, .
.
因?yàn)?/span>是對(duì)應(yīng)分組的頻率與組距的商,所以.
(2)因?yàn)樵撔8咭粚W(xué)生有800人,分組內(nèi)的頻率是,
所以估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在此區(qū)間內(nèi)的人數(shù)為人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】遂寧市觀音湖港口船舶?康姆桨甘窍鹊较韧#
(1)若甲乙兩艘船同時(shí)到達(dá)港口,雙方約定各派一名代表從1,2,3,4,5中各隨機(jī)選一個(gè)數(shù)(甲、乙選取的數(shù)互不影響),若兩數(shù)之和為偶數(shù),則甲先停靠;若兩數(shù)之和為奇數(shù),則乙先?,這種規(guī)則是否公平?請(qǐng)說(shuō)明理由.
(2)根據(jù)以往經(jīng)驗(yàn),甲船將于早上7:00~8:00到達(dá),乙船將于早上7:30~8:30到達(dá),請(qǐng)求出甲船先?康母怕
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合M是滿(mǎn)足下列性質(zhì)的函數(shù)的全體:在定義域內(nèi)存在,使得成立.
(1)函數(shù)是否屬于集合M?說(shuō)明理由;
(2)設(shè)函數(shù),求的取值范圍;
(3)已知函數(shù)圖象與函數(shù)的圖象有交點(diǎn),根據(jù)該結(jié)論證明:函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓E: (a>b>0)的左右焦點(diǎn)分別為F1、F2 , D為橢圓短軸上的一個(gè)頂點(diǎn),DF1的延長(zhǎng)線與橢圓相交于G.△DGF2的周長(zhǎng)為8,|DF1|=3|GF1|.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過(guò)橢圓E的左頂點(diǎn)A作橢圓E的兩條互相垂直的弦AB、AC,試問(wèn)直線BC是否恒過(guò)定點(diǎn)?若是,求出此定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐A﹣BCD中,側(cè)棱AB,AC,AD兩兩垂直,△ABC、△ACD、△ABD的面積分別為 、 、2 ,則三棱錐A﹣BCD的外接球的體積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù) .
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)存在極值,對(duì)于任意的0<x1<x2 , 存在正實(shí)數(shù)x0 , 使得f(x1)﹣f(x2)=f'(x0)(x1﹣x2),試判斷x1+x2與2x0的大小關(guān)系并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線 (t為參數(shù),t∈R),曲線 (θ為參數(shù),θ∈[0,2π]).
(Ⅰ)以O(shè)為極點(diǎn),x軸正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,求曲線C2的極坐標(biāo)方程;
(Ⅱ)若曲線C1與曲線C2相交于點(diǎn)A、B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】輸入x,求函數(shù)y=的值的程序框圖如圖C17所示.
(1)指出程序框圖中的錯(cuò)誤之處并寫(xiě)出正確的算法步驟.
(2)重新繪制程序框圖,并回答下面提出的問(wèn)題.
①要使輸出的值為7,則輸入的x的值應(yīng)為多少?
②要使輸出的值為正數(shù),則輸入的x應(yīng)滿(mǎn)足什么條件?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com