【題目】若圓C1:(x﹣1)2+(y+3)2=1與圓C2:(x﹣a)2+(y﹣b)2=1外離,過直線l:x﹣y﹣1=0上任意一點(diǎn)P分別做圓C1 , C2的切線,切點(diǎn)分別為M,N,且均保持|PM|=|PN|,則a+b=(
A.﹣2
B.﹣1
C.1
D.2

【答案】A
【解析】解:設(shè)P(m,m﹣1),則

∵過直線l:x﹣y﹣1=0上任意一點(diǎn)P分別做圓C1,C2的切線,

切點(diǎn)分別為M,N,且均保持|PM|=|PN|,

∴|PC1|2﹣1=|PC2|2﹣1,

即(m﹣1)2+(m﹣1+3)2﹣1=(m﹣a)2+(m﹣1﹣b)2﹣1,

即(4+2a+2b)m+5﹣a2﹣(1+b)2=0,

∴4+2a+2b=0且5﹣a2﹣(1+b)2=0,

∵圓C1:(x﹣1)2+(y+3)2=1與圓C2:(x﹣a)2+(y﹣b)2=1外離,

>2,

∴a=﹣3,b=1,

∴a+b=﹣2,

故選A.

【考點(diǎn)精析】掌握直線與圓的三種位置關(guān)系是解答本題的根本,需要知道直線與圓有三種位置關(guān)系:無公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓O:x2+y2=r2(r>0),點(diǎn)P為圓O上任意一點(diǎn)(不在坐標(biāo)軸上),過點(diǎn)P作傾斜角互補(bǔ)的兩條直線分別交圓O于另一點(diǎn)A,B.
(1)當(dāng)直線PA的斜率為2時(shí),
①若點(diǎn)A的坐標(biāo)為(﹣ ,﹣ ),求點(diǎn)P的坐標(biāo);
②若點(diǎn)P的橫坐標(biāo)為2,且PA=2PB,求r的值;
(2)當(dāng)點(diǎn)P在圓O上移動(dòng)時(shí),求證:直線OP與AB的斜率之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=( + )x3(a>0,a≠1).
(1)討論函數(shù)f(x)的奇偶性;
(2)求a的取值范圍,使f(x)+f(2x)>0在其定義域上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行程序框圖,如果輸入的N的值為7,那么輸出的p的值是(
A.120
B.720
C.1440
D.5040

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),證明:對(duì)任意的,有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知△ABC的頂點(diǎn)A(5,1),B(1,5).
(1)若A為直角△ABC的直角頂點(diǎn),且頂點(diǎn)C在y軸上,求BC邊所在直線方程;
(2)若等腰△ABC的底邊為BC,且C為直線l:y=2x+3上一點(diǎn),求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|2≤2x≤4},B={x|0<log2x<2},則A∪B=(
A.[1,4]
B.[1,4)
C.(1,2)
D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在區(qū)間D上的函數(shù)f(x),如果滿足:對(duì)任意x∈D,都存在常數(shù)M≥0,有|f(x)|≤M,則稱f(x)是區(qū)間D上有界函數(shù),其中M稱為f(x)上的一個(gè)上界,已知函數(shù)g(x)=log 為奇函數(shù).
(1)求函數(shù)g(x)在區(qū)間[ , ]上的所有上界構(gòu)成的集合;
(2)若g(1﹣m)+g(1﹣m2)<0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐A﹣BCD中,△ABC和△BCD所在平面互相垂直,且AB=CD=4,AC=4 ,CD=4 ,∠ACB=45°,E,F(xiàn)分別為MN的中點(diǎn).
(1)求證:EF∥平面ABD;
(2)求二面角E﹣BF﹣C的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案