已知橢圓,過(guò)點(diǎn)P作橢圓C的兩條切線(xiàn)PM,PN,切點(diǎn)分別為M,N,△PMN為等邊三角形.

(1)求橢圓C的離心率;

(2)過(guò)橢圓C的左焦點(diǎn)F作斜率為1的直線(xiàn)l與橢圓C交于A、B兩點(diǎn),D為橢圓C上任意一點(diǎn),求證:存在成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點(diǎn),且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線(xiàn)MB的垂線(xiàn)x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線(xiàn)MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:數(shù)學(xué)公式+數(shù)學(xué)公式=1,(a>b>0)與雙曲4x2-數(shù)學(xué)公式y2=1有相同的焦點(diǎn),且橢C的離心e=數(shù)學(xué)公式,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線(xiàn)MB的垂線(xiàn)x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線(xiàn)MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省淮北市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線(xiàn)MB的垂線(xiàn)x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線(xiàn)MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省淮南市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線(xiàn)MB的垂線(xiàn)x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線(xiàn)MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省淮北市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線(xiàn)MB的垂線(xiàn)x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線(xiàn)MB上射R的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案