已知函數(shù)的導(dǎo)數(shù)為實數(shù),.

(Ⅰ)若在區(qū)間上的最小值、最大值分別為、1,求、的值;

(Ⅱ)在(Ⅰ)的條件下,求經(jīng)過點且與曲線相切的直線的方程;

解:由已知得,

,得,

,

∴ 當(dāng)時,遞增;

當(dāng)時,遞減.

在區(qū)間上的最大值為,∴

,

由題意得,即,得

,為所求.     

(Ⅱ)解:由(1)得,,點在曲線上.

⑴ 當(dāng)切點為時,切線的斜率,

的方程為,即

⑵當(dāng)切點不是切點時,設(shè)切點為,切線的斜率

的方程為

又點上,∴

,

,

,即,∴. ∴ 切線的方程為

故所求切線的方程為.   

( 或者:由(1)知點A(0,1)為極大值點,所以曲線的點A處的切線為,恰好經(jīng)過點,符合題意.)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年潮州市二模理)(14分)已知函數(shù)的導(dǎo)數(shù)滿足,常數(shù)為方程的實數(shù)根.

⑴ 若函數(shù)的定義域為I,對任意,存在,使等式=成立,

 求證:方程不存在異于的實數(shù)根;

⑵ 求證:當(dāng)時,總有成立;

⑶ 對任意,若滿足,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)的導(dǎo)數(shù)為實數(shù),.

(Ⅰ)若在區(qū)間上的最小值、最大值分別為、1,求、的值;

(Ⅱ)在(Ⅰ)的條件下,求經(jīng)過點且與曲線相切的直線的方程;

(Ⅲ)設(shè)函數(shù),試判斷函數(shù)的極值點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省高三第十次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)的導(dǎo)數(shù)為實數(shù),.

(Ⅰ)若在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;

(Ⅱ)在(Ⅰ)的條件下,求經(jīng)過點且與曲線相切的直線的方程;

(Ⅲ)設(shè)函數(shù),試判斷函數(shù)的極值點個數(shù)。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)的導(dǎo)數(shù)為實數(shù),.(Ⅰ)若在區(qū)間上的最小值、最大值分別為、1,求的值;(Ⅱ)在(Ⅰ)

的條件下,求經(jīng)過點且與曲線相切的直線的方程;

(Ⅲ)設(shè)函數(shù),試判斷函數(shù)的極值點個數(shù).

查看答案和解析>>

同步練習(xí)冊答案