【題目】某地區(qū)上年度電價(jià)為元/kWh,年用電量為kWh.本年度計(jì)劃將電價(jià)降低到0.55元/ kWh到0.75元/ kWh之間,而用戶期望電價(jià)為0.40元/ kWh.經(jīng)測(cè)算,下調(diào)電價(jià)后新增用電量與實(shí)際電價(jià)與用戶的期望電價(jià)的差成反比(比例系數(shù)為),該地區(qū)電力的成本價(jià)為0.30元/ kWh.
(1)寫出本年度電價(jià)下調(diào)后,電力部門的收益與實(shí)際電價(jià)之間的函數(shù)關(guān)系式;
(2)設(shè)=,當(dāng)電價(jià)最低定為多少時(shí)仍可保證電力部門的收益比上一年至少增長(zhǎng)20%?(注:收益=實(shí)際電量×(實(shí)際電價(jià)-成本價(jià)))
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點(diǎn),且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.
(1)求證:A1C⊥平面BCDE;
(2)若M是A1D的中點(diǎn),求CM與平面A1BE所成角的大。
(3)線段BC上是否存在點(diǎn)P,使平面A1DP與平面A1BE垂直?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若是函數(shù)的極值點(diǎn),求的值及函數(shù)的極值;
(2)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,圓C上有n個(gè)不同的點(diǎn)P1,P2,…,Pn,設(shè)兩兩連接這些點(diǎn)所得線段PiPj中,任意三條在圓內(nèi)都不共點(diǎn),試證它們?cè)趫A內(nèi)共≥4).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)的序列An(xn,0),n∈N*,其中x1=0,x2=a(a>0),A3是線段A1A2的中點(diǎn),A4是線段A2A3的中點(diǎn),……,An是線段An-2An-1的中點(diǎn),……
(1)寫出xn與xn-1,xn-2之間的關(guān)系式(n≥3);
(2)設(shè)an=xn+1-xn,計(jì)算a1,a2,a3,由此推測(cè)數(shù)列{an}的通項(xiàng)公式,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高鐵、網(wǎng)購、移動(dòng)支付和共享單車被譽(yù)為中國(guó)的“新四大發(fā)明”,彰顯出中國(guó)式創(chuàng)新的強(qiáng)勁活力.某移動(dòng)支付公司從我市移動(dòng)支付用戶中隨機(jī)抽取100名進(jìn)行調(diào)查,得到如下數(shù)據(jù):
每周移動(dòng)支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合計(jì) | 15 | 12 | 13 | 7 | 8 | 45 |
(1)把每周使用移動(dòng)支付超過3次的用戶稱為“移動(dòng)支付活躍用戶”,由以上數(shù)據(jù)完成下列2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.005的前提下,認(rèn)為“移動(dòng)支付活躍用戶”與性別有關(guān)?
移動(dòng)支付活躍用戶 | 非移動(dòng)支付活躍用戶 | 總計(jì) | |
男 | |||
女 | |||
總計(jì) | 100 |
(2)把每周使用移動(dòng)支付6次及6次以上的用戶稱為“移動(dòng)支付達(dá)人”,視頻率為概率,在我市所有“移動(dòng)支付達(dá)人”中,隨機(jī)抽取4名用戶.為了鼓勵(lì)男性用戶使用移動(dòng)支付,對(duì)抽出的男“移動(dòng)支付達(dá)人”每人獎(jiǎng)勵(lì)300元,記獎(jiǎng)勵(lì)總金額為,求的分布列及數(shù)學(xué)期望.
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)構(gòu)通過對(duì)某企業(yè)今年的生產(chǎn)經(jīng)營(yíng)情況的調(diào)查,得到每月利潤(rùn)(單位:萬元)與相應(yīng)月份數(shù)的部分?jǐn)?shù)據(jù)如表:
1 | 4 | 7 | 12 | |
229 | 244 | 241 | 196 |
(1)根據(jù)如表數(shù)據(jù),請(qǐng)從下列三個(gè)函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述與的變化關(guān)系,并說明理由,,,;
(2)利用(1)中選擇的函數(shù),估計(jì)月利潤(rùn)最大的是第幾個(gè)月,并求出該月的利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: (a>b>0)的左焦點(diǎn)F1與拋物線y2=﹣4x的焦點(diǎn)重合,橢圓E的離心率為 ,過點(diǎn)M (m,0)(m> )作斜率不為0的直線l,交橢圓E于A,B兩點(diǎn),點(diǎn)P( ,0),且 為定值.
(Ⅰ)求橢圓E的方程;
(Ⅱ)求△OAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用收集到的6組數(shù)據(jù)對(duì)制作成如圖所示的散點(diǎn)圖(點(diǎn)旁的數(shù)據(jù)為該點(diǎn)坐標(biāo)),并由最小二乘法計(jì)算得到回歸直線的方程:,相關(guān)系數(shù)為,相關(guān)指數(shù)為;經(jīng)過殘差分析確定點(diǎn)為“離群點(diǎn)”(對(duì)應(yīng)殘差過大的點(diǎn)),把它去掉后,再用剩下的5組數(shù)據(jù)計(jì)算得到回歸直線的方程:,相關(guān)系數(shù)為,相關(guān)指數(shù)為.則以下結(jié)論中,不正確的是( )
A. , B. ,
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com