【題目】數(shù)學中有許多形狀優(yōu)美、寓意美好的曲線,如下圖就是在平面直角坐標系的“心形曲線”,又名RC心形線.如果以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,其RC心形線的極坐標方程為.

1)求RC心形線的直角坐標方程;

2)已知與直線為參數(shù)),若直線RC心形線交于兩點,求的值.

【答案】12

【解析】

1)利用兩邊平方的方法,結合極坐標和直角坐標相互轉化的公式,求得心形線的直角坐標方程.

2)將直線的參數(shù)方程轉化為標準參數(shù)方程,然后代入心形線的直角坐標方程,利用直線參數(shù)的幾何意義,求得的值.

1)因為

所以,

,

;

2)因為在直線為參數(shù))上,

設直線的參數(shù)方程為為參數(shù))

若直線RC心形線交于兩點,

則只能交于軸右側部分,

將直線的參數(shù)方程,代入方程,化簡得,

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了治理空氣污染,某市設個監(jiān)測站用于監(jiān)測空氣質量指數(shù),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設有、個監(jiān)測站,并以個監(jiān)測站測得的的平均值為依據(jù)播報該市的空氣質量.

1)若某日播報的,已知輕度污染區(qū)平均值為,中度污染區(qū)平均值為,求重試污染區(qū)平均值;

2)如圖是月份天的的頻率分布直方圖,月份僅有.

①某校參照官方公布的,如果周日小于就組織學生參加戶外活動,以統(tǒng)計數(shù)據(jù)中的頻率為概率,求該校學生周日能參加戶外活動的概率;

②環(huán)衛(wèi)部門從月份不小于的數(shù)據(jù)中抽取兩天的數(shù)據(jù)進行研究,求抽取的這兩天中值都在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸非負半軸為極軸建立極坐標系,點為曲線上的動點,點在線段的延長線上且滿足的軌跡為.

1)求曲線的極坐標方程;

2)設點的極坐標為,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,平面平面,,,,.

1)求多面體的體積;

2)已知是棱的中點,在棱是否存在點使得,若存在,請確定點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線,把上各點橫坐標伸長為原來的2倍,縱坐標不變,得到函數(shù)的圖象,關于有下述四個結論:

1)函數(shù)上是減函數(shù);

2)方程內有2個根;

3)函數(shù)(其中)的最小值為;

4)當,且時,,則.

其中正確結論的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為(γ為參數(shù)),曲線的參數(shù)方程為(s為參數(shù)).以坐標原點為極點,x軸的正半軸為極軸建立極坐秘系,已知點A的極坐標為,直線l()交于點B,其中

1)求曲線的極坐標方程以及曲線的普通方程;

2)過點A的直線m交于MN兩點,若,且,求α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)k為常數(shù),).

1)在下列條件中選擇一個________使數(shù)列是等比數(shù)列,說明理由;

①數(shù)列是首項為2,公比為2的等比數(shù)列;

②數(shù)列是首項為4,公差為2的等差數(shù)列;

③數(shù)列是首項為2,公差為2的等差數(shù)列的前n項和構成的數(shù)列.

2)在(1)的條件下,當時,設,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解校園安全教育系列活動的成效,對全校學生進行了一次安全意識測試,根據(jù)測試成績評定合格”“不合格兩個等級,同時對相應等級進行量化:合格5分,不合格0.現(xiàn)隨機抽取部分學生的答卷,統(tǒng)計結果及對應的頻率分布直方圖如下:

等級

不合格

合格

得分

頻數(shù)

6

a

24

b

1)由該題中頻率分布直方圖求測試成績的平均數(shù)和中位數(shù);

2)其他條件不變在評定等級為合格的學生中依次抽取2人進行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;

3)用分層抽樣的方法,從評定等級為合格不合格的學生中抽取10人進行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左焦點為,點為橢圓的左、右頂點,點是橢圓上一點,且直線的傾斜角為,,已知橢圓的離心率為.

1)求橢圓的方程;

2)設為橢圓上異于的兩點,若直線的斜率等于直線斜率的倍,求四邊形面積的最大值.

查看答案和解析>>

同步練習冊答案