【題目】如圖,在四棱錐中,平面平面ABCD是等邊三角形,四邊形ABCD是矩形,F為棱PA上一點(diǎn),且,MAD的中點(diǎn),四棱錐的體積為

(1)若,NPB的中點(diǎn),求證:平面平面PCD;

(2)是否存在,使得平面FMB與平面PAD所成的二面角余弦的絕對(duì)值為

【答案】(1)詳見(jiàn)解析(2)存在,使得平面FMB與平面PAD所成的二面角余弦的絕對(duì)值為

【解析】

(1)由已知有,,即可證明平面PCD;

(2)建立以M為原點(diǎn),MAx軸,MEy軸,MPz軸建立空間直角坐標(biāo)系,則可得FMN的法向量為,取面PAD的法向量,由向量的數(shù)量積公式計(jì)算可得解.

解:(1)因?yàn)?/span>,所以FAP的中點(diǎn),又因?yàn)?/span>NPB的中點(diǎn),所以,由四邊形ABCD是矩形,得,故,

(2)連接PM,過(guò)MBCE,由是等邊三角形,得,,以M為原點(diǎn),MAx軸,MEy軸,MPz軸建立空間直角坐標(biāo)系,

假設(shè)存在,滿(mǎn)足題意,設(shè),,則,,,,則,

設(shè)面FMN的法向量為,所以,

,得,取面PAD的法向量,

由題知:,解得,

所以,存在,使得平面FMB與平面PAD所成的二面角余弦的絕對(duì)值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的導(dǎo)數(shù).

(Ⅰ)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

(Ⅱ)證明:在區(qū)間上存在唯一零點(diǎn);

(Ⅲ)設(shè),若對(duì)任意,均存在,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的最小正周期為π,它的一個(gè)對(duì)稱(chēng)中心為(,0)

(1)求函數(shù)y=f(x)圖象的對(duì)稱(chēng)軸方程;

(2)若方程f(x)=在(0,π)上的解為x1,x2,求cos(x1-x2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】檳榔原產(chǎn)于馬來(lái)西亞,中國(guó)主要分布在云南、海南及臺(tái)灣等熱帶地區(qū),在亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,在南方一些少數(shù)民族還有將果實(shí)作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國(guó)際癌癥研究機(jī)構(gòu)列為致癌物清單Ⅰ類(lèi)致癌物.云南某民族中學(xué)為了解兩個(gè)少數(shù)民族班學(xué)生咀嚼檳榔的情況,分別從這兩個(gè)班中隨機(jī)抽取5名同學(xué)進(jìn)行調(diào)查,將他們平均每周咀嚼檳榔的顆數(shù)作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個(gè)位數(shù)字).

(1)從班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過(guò)19的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過(guò)21的數(shù)據(jù)記為,求的概率;

(2)從所有咀嚼檳榔顆數(shù)在20顆以上(包含20顆)的同學(xué)中隨機(jī)抽取3人,求被抽到班同學(xué)人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中正確的是(

A.直線(xiàn)與直線(xiàn)相互平行的充分不必條件

B.直線(xiàn)垂直平面內(nèi)無(wú)數(shù)條直線(xiàn)直線(xiàn)垂直于平面的充分條件

C.已知、、為非零向量,則的充要條件

D.:存在,.:任意,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校在2016年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如下表所示.

組號(hào)

分組

頻數(shù)

頻率

1

5

0.050

2

n

0.350

3

30

p

4

20

0.200

5

10

0.100

合計(jì)

100

1.000

(1)求頻率分布表中np的值,并估計(jì)該組數(shù)據(jù)的中位數(shù)(保留l位小數(shù));

(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第3、45組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,則第34、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?

(3)在(2)的前提下,學(xué)校決定從6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有1名學(xué)生被甲考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若關(guān)于x的方程有唯一的實(shí)數(shù)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】斐波那契數(shù)列,又稱(chēng)黃金分割數(shù)列.因數(shù)學(xué)家列昂納多·斐波那契以兔子繁殖為例子而引入,故又稱(chēng)為兔子數(shù)列,指的是這樣一個(gè)數(shù)列:11、2、3、5、8、13、2134、…..,在數(shù)學(xué)上,斐波那契數(shù)列以如下被遞推的方法定義:,,.這種遞推方法適合研究生活中很多問(wèn)題.比如:一六八中學(xué)食堂一樓到二樓有15個(gè)臺(tái)階,某同學(xué)一步可以跨一個(gè)或者兩個(gè)臺(tái)階,則他到二樓就餐有( )種上樓方法.

A.377B.610C.987D.1597

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:

甲說(shuō):作品獲得一等獎(jiǎng)”; 乙說(shuō):作品獲得一等獎(jiǎng)”;

丙說(shuō):兩件作品未獲得一等獎(jiǎng)”; 丁說(shuō):作品獲得一等獎(jiǎng)”.

評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說(shuō)的話(huà)是對(duì)的,則獲得一等獎(jiǎng)的作品是_________

查看答案和解析>>

同步練習(xí)冊(cè)答案