【題目】已知函數(shù),

Ⅰ)設(shè),求函數(shù)的單調(diào)區(qū)間;

Ⅱ)若,函數(shù),試判斷是否存在,使得為函數(shù)的極小值點(diǎn).

【答案】1遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2存在

【解析】試題分析:(I)由題意,得,令,得.可得函數(shù)的單調(diào)區(qū)間

II)由已知有, .令,則.由題可得函數(shù)在區(qū)間上單調(diào)遞增.且, .故存在 ,使得,且當(dāng)時(shí), ,當(dāng) ,所以存在,使得為函數(shù)的極小值點(diǎn).

試題解析:(I)由題意可知: ,其定義域?yàn)?/span>,則

,得,令,得.故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

II)由已知有,對(duì)于,有

,則

,有

,所以,故當(dāng)時(shí),

 函數(shù)在區(qū)間上單調(diào)遞增.

注意到,

故存在 ,使得,且當(dāng)時(shí), ,當(dāng),所以存在,使得為函數(shù)的極小值點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把電影院的4張電影票隨機(jī)地分發(fā)給甲、乙、丙、丁4人,每人分得1張,事件甲分得41號(hào)與事件乙分得41號(hào)是(

A.對(duì)立事件B.不可能事件C.互斥但不對(duì)立事件D.以上答案都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某船舶制造廠(chǎng)根據(jù)以往的生產(chǎn)銷(xiāo)售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷(xiāo)售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)船舶艘,其總成本為(千萬(wàn)元),其中固定成本為2.8千萬(wàn)元,并且每生產(chǎn)1艘的生產(chǎn)成本為1千萬(wàn)元(總成本=固定成本+生產(chǎn)成本).銷(xiāo)售收入(千萬(wàn)元)滿(mǎn)足:,假定該船舶制造廠(chǎng)產(chǎn)銷(xiāo)平衡(即生產(chǎn)的船舶都能賣(mài)掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問(wèn)題:

1)寫(xiě)出利潤(rùn)函數(shù)的解析式(利潤(rùn)=銷(xiāo)售收入-總成本);

2)該廠(chǎng)生產(chǎn)多少艘船舶時(shí),可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè):實(shí)數(shù)滿(mǎn)足,其中;:實(shí)數(shù)滿(mǎn)足.

(1),且為真,為假,求實(shí)數(shù)的取值范圍;

(2)的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)家默拉在1765年提出定理,三角形的外心,重心,垂心(外心是三角形三條邊的垂直平分線(xiàn)的交點(diǎn)重心是三角形三條中線(xiàn)的交點(diǎn),垂心是三角形三條高的交點(diǎn))依次位于同一直線(xiàn)上,且重心到外心的距離是重心到垂心距離的一半,這條直線(xiàn)被后人稱(chēng)之為三角形的歐拉線(xiàn),已知ABC的頂點(diǎn),則ABC的歐拉線(xiàn)方程為____________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前n項(xiàng)和為,滿(mǎn)足,.

1)若,求數(shù)列的通項(xiàng)公式;

2)是否存在一個(gè)奇數(shù),使得數(shù)列中的項(xiàng)都在數(shù)列中?若存在,找出符合條件的一個(gè)奇數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn),,則下面結(jié)論正確的是( )

A. 上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向左平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)

B. 上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向左平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)

C. 上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向左平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)

D. 上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向左平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,AB AC,點(diǎn)E,F分別在棱BB1,CC1上(均異于端點(diǎn)),且∠ABEACF,AEBB1,AFCC1

求證:(1)平面AEF⊥平面BB1C1C;

2BC //平面AEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)fx)=Asinωx+φ)(ω0|φ|)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:

1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并直接寫(xiě)出函數(shù)fx)的解析式;

2)將yfx)圖象上所有點(diǎn)向左平移θθ0)個(gè)單位長(zhǎng)度,得到ygx)的圖象.ygx)圖象的一個(gè)對(duì)稱(chēng)中心為(,0),求θ的最小值.

3)若,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案