設(shè)實數(shù)x,y滿足約束條件
x+3y-3≤0
x≥0
y≥0
,則z=
y+2
x-1
的取值范圍是(  )
A.(-∞,-2)∪(1,+∞)B.(-∞,-2]∪[1,+∞)C.(-2,1)D.[-2,1]
滿足約束條件
x+3y-3≤0
x≥0
y≥0
,的平面區(qū)域,
z=
y+2
x-1

表示區(qū)域內(nèi)點Q與P(1,-2)點連線的斜率,
又∵當(dāng)x=3,y=0時,z=1,當(dāng)x=0,y=0時,z=-2
z=
y+2
x-1
的取值范圍為(-∞,-2]∪[1,+∞)
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

不等式的整數(shù)解的個數(shù)為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)變量x,y滿足
x+y≤1
x-y≤1
x≥0
,則x+2y的最大值和最小值分別為( 。
A.1,-1B.2,-2C.1,-2D.2,-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

要將兩種大小不同的鋼板截成A、B、C三種規(guī)格,每張鋼板可同時截得三種規(guī)格的小鋼板的塊數(shù)如下表所示:
規(guī)格類型A規(guī)格B規(guī)格C規(guī)格
鋼板類型
第一種鋼板211
第二種鋼板123
今需A、B、C三種規(guī)格的成品分別為15、18、27塊,問各截這兩種鋼板多少張可得所需三種規(guī)格成品,且使所用鋼板張數(shù)最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若由不等式組
x≤my+n
x-
3
y≥0
y≥0
,(n>0)確定的平面區(qū)域的邊界為三角形,且它的外接圓的圓心在x軸上,則實數(shù)m=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知實數(shù)x,y滿足
x-y+1≥0
x+2y-8≤0
x≤3
,若(3,
5
2
)
是使得ax-y取得最小值的可行解,則實數(shù)a的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

不等式組
x≤3
x+y≥0
x-y+5≥0
,表示的平面區(qū)域的面積是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

不等式
(x-y+5)(x+y)≥0
0≤x≤3
表示的平面區(qū)域是一個( 。
A.三角形B.直角三角形C.梯形D.矩形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(Ⅰ)在如圖的坐標(biāo)系中作出同時滿足約束條件:x+y-1≥0;x-y+1≥0;4x+y-2≥0的可行性區(qū)域;
(Ⅱ)若實數(shù)x,y滿足(Ⅰ)中約束條件,求目標(biāo)函數(shù)
x+y
x
的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案