【題目】若四面體的三組對棱分別相等,即,,,則________.(寫出所有正確結(jié)論的編號)

①四面體每個面的面積相等

②四面體每組對棱相互垂直

③連接四面體每組對棱中點(diǎn)的線段相互垂直平分

④從四面體每個頂點(diǎn)出發(fā)的三條棱的長都可以作為一個三角形的三邊長

【答案】

【解析】

由對棱相等知四面體為長方體的面對角線組成的三棱錐,借助長方體的性質(zhì)判斷各結(jié)論是否正確即可.

由題意可知四面體ABCD為長方體的面對角線組成的三棱錐,如圖所示;

由四面體的對棱相等可知四面體的各個面全等,

它們的面積相等,則正確;

當(dāng)四面體棱長都相等時(shí),四面體的每組對棱互相垂直,

錯誤;

由長方體的性質(zhì)可知四面體的對棱中點(diǎn)連線

必經(jīng)過長方體的中心,

由對稱性知連接四面體ABCD每組對棱中點(diǎn)的線段相互垂直平分,則正確;

,,

可得過四面體任意一點(diǎn)的三條棱的長為的三邊長,則正確.

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】邊長為2正方體中,點(diǎn)E在棱CD.

1)求證:;

2)若ECD中點(diǎn),求與平面所成的角的正弦值;

3)設(shè)M在棱上,且,是否存在點(diǎn)E,使平面⊥平面,若存在,指出點(diǎn)E的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年春節(jié)期間,某超市準(zhǔn)備舉辦一次有獎促銷活動,若顧客一次消費(fèi)達(dá)到400元則可參加一次抽獎活動,超市設(shè)計(jì)了兩種抽獎方案.

方案一:一個不透明的盒子中裝有30個質(zhì)地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機(jī)抽取一個球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.

方案二:一個不透明的盒子中裝有30個質(zhì)地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機(jī)抽取一個球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎,且顧客有放回地抽取3次.

(1)現(xiàn)有兩位顧客均獲得抽獎機(jī)會,且都按方案一抽獎,試求這兩位顧客均獲得180元返金券的概率;

(2)若某顧客獲得抽獎機(jī)會.

①試分別計(jì)算他選擇兩種抽獎方案最終獲得返金券的數(shù)學(xué)期望;

②為了吸引顧客消費(fèi),讓顧客獲得更多金額的返金券,該超市應(yīng)選擇哪一種抽獎方案進(jìn)行促銷活動?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖如示的多面體中,平面平面,四邊形是邊長為的正方形, ,.

1)若分別是中點(diǎn),求證: ∥平面

2)求此多面體的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)采用新工藝,把企業(yè)生產(chǎn)中排放的二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為噸,最多為噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可近似地表示為,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為.

1)該單位每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?

2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家至少需要補(bǔ)貼多少元才能使該單位不虧損?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(1)求圓的極坐標(biāo)方程;

(2)設(shè)曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,求三條曲線,所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知函數(shù).

(1)若函數(shù)區(qū)間單調(diào),求取值范圍;

(2)若函數(shù)無零點(diǎn),求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,,,四邊形為矩形,平面平面,.

(1)證明:平面;

(2)設(shè)點(diǎn)在線段上運(yùn)動,平面與平面所成銳二面角為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某地區(qū)某高傳染性病毒流行期間,為了建立指標(biāo)顯示疫情已受控制,以便向該地區(qū)居民顯示可以過正常生活,有公共衛(wèi)生專家建議的指標(biāo)是“連續(xù)7天每天新增感染人數(shù)不超過5人”,根據(jù)連續(xù)7天的新增病例數(shù)計(jì)算,下列各個選項(xiàng)中,一定符合上述指標(biāo)的是__________

①平均數(shù); ②標(biāo)準(zhǔn)差; ③平均數(shù)且標(biāo)準(zhǔn)差;

④平均數(shù)且極差小于或等于2; ⑤眾數(shù)等于1且極差小于或等于4.

查看答案和解析>>

同步練習(xí)冊答案