【題目】如圖,直三棱柱中,分別是的中點(diǎn),.
(1)證明:平面;
(2)求二面角的余弦值.
【答案】(1)證明見解析 (2)
【解析】
(1)連接交于點(diǎn),由三角形中位線定理得,由此能證明平面.
(2)以為坐標(biāo)原點(diǎn),的方向?yàn)?/span>軸正方向,的方向?yàn)?/span>軸正方向,的方向?yàn)?/span>軸正方向,建立空間直角坐標(biāo)系.分別求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值.
證明:證明:連接交于點(diǎn),
則為的中點(diǎn).又是的中點(diǎn),
連接,則.
因?yàn)?/span>平面,平面,
所以平面.
(2)由,可得:,即
所以
又因?yàn)?/span>直棱柱,所以以點(diǎn)為坐標(biāo)原點(diǎn),分別以直線為軸、軸、軸,建立空間直角坐標(biāo)系, 則,
設(shè)平面的法向量為,則且,可解得,令,得平面的一個(gè)法向量為,
同理可得平面的一個(gè)法向量為,
則
所以二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《西游記》《三國演義》《水滸傳》和《紅樓夢》是中國古典文學(xué)瑰寶,并稱為中國古典小說四大名著.某中學(xué)為了解本校學(xué)生閱讀四大名著的情況,隨機(jī)調(diào)查了100名學(xué)生,其中閱讀過《西游記》的學(xué)生有70位,只閱讀過《紅樓夢》的學(xué)生有20位,則既沒閱讀過《西游記》也沒閱讀過《紅樓夢》的學(xué)生人數(shù)與該校學(xué)生總數(shù)比值的估計(jì)值為( )
A.0.1B.0.2C.0.3D.0.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出的普通方程和的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在上,點(diǎn)在上,求的最小值及此時(shí)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】沙漏是古代的一種計(jì)時(shí)裝置,它由兩個(gè)形狀完全相同的容器和一個(gè)狹窄的連接管道組成,開始時(shí)細(xì)沙全部在上部容器中,細(xì)沙通過連接管道全部流到下部容器所需要的時(shí)間稱為該沙漏的一個(gè)沙時(shí).如圖,某沙漏由上下兩個(gè)圓錐組成,圓錐的底面直徑和高均為8cm,細(xì)沙全部在上部時(shí),其高度為圓錐高度的(細(xì)管長度忽略不計(jì)).假設(shè)該沙漏每秒鐘漏下的沙,且細(xì)沙全部漏入下部后,恰好堆成一個(gè)蓋住沙漏底部的圓錐形沙堆.以下結(jié)論正確的是( )
A.沙漏中的細(xì)沙體積為
B.沙漏的體積是
C.細(xì)沙全部漏入下部后此錐形沙堆的高度約為2.4cm
D.該沙漏的一個(gè)沙時(shí)大約是1985秒()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn).
(1)求橢圓的方程,并求其離心率;
(2)過點(diǎn)作軸的垂線,設(shè)點(diǎn)為第四象限內(nèi)一點(diǎn)且在橢圓上(點(diǎn)不在直線上),點(diǎn)關(guān)于的對(duì)稱點(diǎn)為,直線與交于另一點(diǎn).設(shè)為原點(diǎn),判斷直線與直線的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由我國引領(lǐng)的5G時(shí)代已經(jīng)到來,5G的發(fā)展將直接帶動(dòng)包括運(yùn)營、制造、服務(wù)在內(nèi)的通信行業(yè)整體的快速發(fā)展,進(jìn)而對(duì)增長產(chǎn)生直接貢獻(xiàn),并通過產(chǎn)業(yè)間的關(guān)聯(lián)效應(yīng)和波及效應(yīng),間接帶動(dòng)國民經(jīng)濟(jì)各行業(yè)的發(fā)展,創(chuàng)造岀更多的經(jīng)濟(jì)增加值.如圖是某單位結(jié)合近年數(shù)據(jù),對(duì)今后幾年的5G經(jīng)濟(jì)產(chǎn)出所做的預(yù)測.結(jié)合下圖,下列說法正確的是( )
A.5G的發(fā)展帶動(dòng)今后幾年的總經(jīng)濟(jì)產(chǎn)出逐年增加
B.設(shè)備制造商的經(jīng)濟(jì)產(chǎn)出前期增長較快,后期放緩
C.設(shè)備制造商在各年的總經(jīng)濟(jì)產(chǎn)出中一直處于領(lǐng)先地位
D.信息服務(wù)商與運(yùn)營商的經(jīng)濟(jì)產(chǎn)出的差距有逐步拉大的趨勢
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國有個(gè)名句“運(yùn)籌帷幄之中,決勝千里之外”.其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來進(jìn)行計(jì)算,算籌是將幾寸長的小竹棍擺在平面上進(jìn)行運(yùn)算,算籌的擺放形式有縱橫兩種形式,如下表:
表示一個(gè)多位數(shù)時(shí),像阿拉伯計(jì)數(shù)一樣,把各個(gè)數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個(gè)位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,以此類推,例如6613用算籌表示就是:,則7288用算籌式可表示為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南北朝時(shí)期數(shù)學(xué)家、天文學(xué)家——祖暅,提出了著名的祖暅原理:“冪勢既同,則積不容異也”.“冪”是截面積,“勢”是幾何體的高,意思是兩等高幾何體,若在每一等高處的兩截面面積都相等,則兩幾何體體積相等.已知某不規(guī)則幾何體與如圖三視圖所對(duì)應(yīng)的幾何體滿足祖暅原理,則該不規(guī)則幾何體的體積為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com