某學生在觀察正整數(shù)的前n項平方和公式即12+22+32+…+n2=
n(n+1)(2n+1)
6
,n∈N*時發(fā)現(xiàn)它的和為關于n的三次函數(shù),于是他猜想:是否存在常數(shù)a,b,1•22+2•32+…+n(n+1)2=
n(n+1)(n+2)(an+b)
12
.對于一切n∈N*都立?
(1)若n=1,2 時猜想成立,求實數(shù)a,b的值.
(2)若該同學的猜想成立,請你用數(shù)學歸納法證明.若不成立,說明理由.
分析:(1)先假設存在符合題意的常數(shù)a,b,由n=1,n=2構造個方程求出a,b即可,
(2)再用用數(shù)學歸納法證明其是否成立,證明時先證:(1)當n=1時成立.(2)再假設n=k(k≥1)時,成立,即1•22+2•32++k(k+1)2=
k(k+1)
12
(3k2+11k+10),再遞推到n=k+1時,成立即可.
解答:證明:(1)若n=1,2 時猜想成立,
假設存在符合題意的常數(shù)a,b,
在等式1•22+2•32++n(n+1)2
=
n(n+1)(n+2)(an+b)
12
中,
令n=1,得4=
1
2
(a+b)①
令n=2,得22=2(2a+b)②
由①②解得a=3,b=5,
(2)于是,對于對于一切正整數(shù)n猜想都有
1•22+2•32++n(n+1)2=
n(n+1)
12
(3n2+11n+10)(*)成立.
下面用數(shù)學歸納法證明:對于一切正整數(shù)n,(*)式都成立.
(1)當n=1時,由上述知,(*)成立.
(2)假設n=k(k≥1)時,(*)成立,
即1•22+2•32++k(k+1)2
=
k(k+1)
12
(3k2+11k+10),
那么當n=k+1時,
1•22+2•32++k(k+1)2+(k+1)(k+2)2
=
k(k+1)
12
(3k2+11k+10)+(k+1)(k+2)2
=
(k+1)(k+2)
12
(3k2+5k+12k+24)
=
(k+1)(k+2)
12
[3(k+1)2+11(k+1)+10],
由此可知,當n=k+1時,(*)式也成立.
綜上所述,當a=3,b=5時題設的等式對于一切正整數(shù)n都成立.
點評:本小題主要考查數(shù)學歸納法、數(shù)列的求和、存在性問題等基礎知識,考查運算求解能力,考查化歸與轉化思想.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某學生在觀察正整數(shù)的前n項平方和公式即12+22+32+…+n2=數(shù)學公式,n∈N*時發(fā)現(xiàn)它的和為關于n的三次函數(shù),于是他猜想:是否存在常數(shù)a,b,1•22+2•32+…+n(n+1)2=數(shù)學公式.對于一切n∈N*都立?
(1)若n=1,2 時猜想成立,求實數(shù)a,b的值.
(2)若該同學的猜想成立,請你用數(shù)學歸納法證明.若不成立,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年江蘇省無錫一中高二(下)期中數(shù)學試卷(理科)(解析版) 題型:解答題

某學生在觀察正整數(shù)的前n項平方和公式即12+22+32+…+n2=,n∈N*時發(fā)現(xiàn)它的和為關于n的三次函數(shù),于是他猜想:是否存在常數(shù)a,b,1•22+2•32+…+n(n+1)2=.對于一切n∈N*都立?
(1)若n=1,2 時猜想成立,求實數(shù)a,b的值.
(2)若該同學的猜想成立,請你用數(shù)學歸納法證明.若不成立,說明理由.

查看答案和解析>>

同步練習冊答案